



#### Meinberg Funkuhren

Lange Wand 9 D-31812 Bad Pyrmont Telefon: (0 52 81) 93 09-0 Telefax: (0 52 81) 93 09-30 https://www.meinberg.de

info@meinberg.de

# GRC181: GPS / GLONASS / BeiDou gestützte Zeitsynchronisation für stationäre und mobile Anwendungen

Das GRC181 Board verfügt über einen speziellen Empfänger, der sowohl GPS, GLONASS und BeiDou-Signale verarbeiten kann. Der Empfänger kann aber auch so konfiguriert werden, dass er nur über GPS oder GLONASS oder nur über BeiDou-Signale synchronisiert wird.

Durch die gro0e Anzahl der Ein- / Ausgänge ist dieser Empfänger die erste Wahl für eine breite Palette von Anwendungen, einschließlich Zeit- und Frequenzsynchronisationsaufgaben sowie die Messungen von asynchronen Zeitereignisse.

Die GRC181 mit integriertem GPS/GLONASS/BeiDou-Empfänger liefert genaue Zeit mit höchster Präzision in stationären und mobilen Umgebungen. Die Satellitensignale werden über eine Standard L1 Antennen unterstützt.

## **Wichtiger Hinweis**

Dieses Produkt ist nicht mehr erhältlich. Wir leisten natürlich weiterhin Support für die bereits ausgelieferten Geräte. Bitte wenden Sie sich an unseren [1] Vertrieb.

#### **Features**

- Sekunden- und Minutenimpulse
- 2 Time-Trigger-Eingänge
- Störmeldeausgang
- Optionaler DDS-Frequenzsynthesizer
- DCF77-Simulation
- Antenne direkt absetzbar bis max. 150 m mit H2010 Ultraflex-Koaxialkabel
- Normalfrequenzausgänge
- Flash-EPROM mit Bootstrap Loader
- Optional bis zu 4 serielle Schnittstellen bis zu 4 programmierbare Schaltausgänge Zeitcode-Generator (IRIG-B, AFNOR)
- Wird inklusive passender 40 dB Multi GNSS L1 Antenne, 20 Meter vorkonfektioniertem Belden H155 Koaxialkabel



### **Produktbeschreibung**

Die GRC181 bietet satellitengestützte Zeitsynchronisation gemäß höchsten Genauigkeitsstandards für stationäre oder mobile Anwendungen. Der Empfänger ist geeignet, in Rechenzentren oder an Bord von Autos, Lastwagen, Flugzeugen, Schiffen und anderen beweglichen Plattformen eingesetzt zu werden. Der Satellitenempfänger kann seine Position auch bei einer maximalen Beschleunigung von bis zu 5 g, bei einer maximalen Geschwindigkeit von 500 m/s und in einer Höhe von bis zu 18.000 Metern bestimmen.

Die GRC181 wird verwendet, um hochgenaue Zeit zu liefern und um Messaufgaben zu bewältigen. Die Karte ist in der Lage feste und programmierbare Standardfrequenzen mit sehr hoher Genauigkeit und Stabilität zu erzeugen. Durch verschiedene Oszillatoroptionen erfüllt die GRC181 unterschiedlichste Anforderungen an Genauigkeit und Holdover-Eigenschaften. Der Impulsgenerator der GRC181 erzeugt Pulse pro Sekunde und pro Minute. Als Option stehen bis zu vier programmierbare Ausgänge zur Verfügung. Die Impulse werden auf UTC-Basis synchronisiert.

Das Modul verfügt über zwei Eingänge für die Messung von asynchronen Zeitereignissen. Diese Capture-Ereignisse können über eine serielle Schnittstelle ausgelesen werden. Das Board verwendet ein binäres Schnittstellen-Protokoll um Konfigurationsparameter zu empfangen und um Statusinformationen mit externen Geräten über eine RS232 Schnittstellen auszutauschen.

#### MRS-Fähigkeit

Der Oszillator des GRC181 Empfängers kann durch eine externe Referenzquelle (z.B. 1PPS, 10MHz, IRIG, PPS + String) diszipliniert werden.

#### Standard L1 Antenne

Zum Lieferumfang gehört eine 40 dB GPS L1 / GLONASS L1-Antenne. Die Antenne mit integriertem Überspannungsschutz arbeitet in einem Frequenzbereich von 1575,42 + -10MHz und 1602 bis 1615 MHz.



# Eigenschaften

| Empfängertyp                     | Kombinierter GPS / GLONASS / BeiDou Empfänger                                                                                                                                                                                                                                                                                      |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                  | * Anzahl Kanäle: 72                                                                                                                                                                                                                                                                                                                |  |
|                                  | * Frequenzband: GPS L1, GLONASS L1                                                                                                                                                                                                                                                                                                 |  |
|                                  | * Standard Genauigkeit (GLONASS)                                                                                                                                                                                                                                                                                                   |  |
|                                  | * C/A code (GPS)                                                                                                                                                                                                                                                                                                                   |  |
| Antonnontun                      | 40 dB GPS L1/GLONASS L1                                                                                                                                                                                                                                                                                                            |  |
| Antennentyp                      | Antenne mit eingebautem Überspannungsschutz                                                                                                                                                                                                                                                                                        |  |
|                                  | * Frequenzband: 1575.42 ± 10 MHz / 1602-1615 MHz                                                                                                                                                                                                                                                                                   |  |
|                                  | * Antennenverstärkung:                                                                                                                                                                                                                                                                                                             |  |
| Synchronisationszeit             | Max. 1 Minute im Normalbetrieb<br>Max. 25 Minuten (Durchschnitt 12 Minuten) bei Erstinbetriebnahme oder fehlenden<br>Satellitedaten                                                                                                                                                                                                |  |
| Frequenzausgänge                 | Option: Frequenzsynthesizer 1/8 Hz bis 10 MHz (TTL, Sinus 1,5Veff)                                                                                                                                                                                                                                                                 |  |
| Pulsausgänge                     | Sekunden- und Minutenimpulse (TTL-Pegel), Impulslänge: 200 ms                                                                                                                                                                                                                                                                      |  |
| Genauigkeit der<br>Ausgangspulse | Abhängig von Oszillatoroption: < ±50ns (OCXO SQ, OCXO MQ, OCXO HQ, OCXO DHQ, Rubidium)                                                                                                                                                                                                                                             |  |
| Schnittstellen                   | Zwei unabhängige serielle RS-232 Schnittstellen (vier Schnittstellen optional), menügeführt einstellbar.                                                                                                                                                                                                                           |  |
| Serielle Telegrammausgabe        | Baudrate: 300, 600, 1200, 2400, 4800, 9600, 19200 Baud Datenformat: 7E1, 7E2, 7N2, 7O1, 7O2, 8E1, 8N1, 8N2, 8O1 Zeittelegramm: [2]Meinberg Standard-Telegramm, SAT, Uni Erlangen, COMPUTIME, Sysplex 1, SPA, RACAL, Meinberg GPS, [3]Capture-Telegramm, ION, ION Blanked, IRIG-I, NMEA (RMC,GGA,ZDA)                               |  |
| Schaltausgänge                   | Optional:  Für vier TTL Ausgänge sind die folgenden Betriebsmodi getrennt einstellbar:  - frei programmierbare zyklische oder feste Impulse  - Timecode  - Timermodus; drei 'ON'- und drei 'OFF'-Zustände pro Tag und Kanal programmierbar Die Schaltzustände sind für alle Ausgänge invertierbar, die Impulslängen einstellbar im |  |
|                                  | 10ms-Raster zwischen 10ms und 10s.<br>Die Impulsausgabe ist für alle Kanäle gemeinsam einstellbar auf 'always' oder 'ifsync'.                                                                                                                                                                                                      |  |



| Unterstützte          | IRIG B002: 100pps, PWM-DC-Signal, kein Träger, BCD time-of-year                          |
|-----------------------|------------------------------------------------------------------------------------------|
| Zeitcode-Formate      | IRIG B122: 100pps, AM-Sinussignal, 1 kHz Trägerfrequenz, BCD time-of-year                |
|                       | IRIG B003: 100pps, PWM-DC-Signal, kein Träger, BCD time-of-year, SBS time-of-day         |
|                       | IRIG B123: 100pps, AM-Sinussignal, 1kHz Sinusträger, BCD time-of-year, SBS               |
|                       | time-of-day                                                                              |
|                       | IRIG B006: 100 pps, PWM-DC-Signal, kein Träger, BCD time-of-year, year                   |
|                       | IRIG B126: 100 pps, AM Sinussignal, 1 kHz Trägerfrequenz, BCD time-of-year, year         |
|                       | IRIG B007: 100 pps, PWM-DC-Signal, kein Träger, BCD time-of-year, Year, SBS time-of-day  |
|                       | IRIG B127: 100 pps, AM Sinussignal, 1 kHz Trägerfrequenz, BCD time-of-year, year,        |
|                       | SBS time-of-day                                                                          |
|                       | IEEE1344: Code. lt. IEEE1344-1995, 100pps, AM-Sinussignal, 1kHz Träger, BCD              |
|                       | time-of-year, SBS time-of-day, IEEE1344 Erweiterungen für Datum, Zeitzone,               |
|                       | Sommer/Winterzeit und Schaltsekunde im Segment "Control Functions"                       |
|                       | C37.118: wie IEEE1344, jedoch mit gedrehtem Vorzeichenbit für den UTC-Offset             |
|                       | <b>AFNOR:</b> Code lt. NFS-87500, 100pps, AM-Sinussignal, 1kHz Träger, BCD time-of-year, |
|                       | vollständiges Datum, SBS time-of-day                                                     |
|                       |                                                                                          |
| Time-Trigger-Eingänge | Auflösung 100ns, Triggerung über fallende TTL-Flanke                                     |
|                       | Ausgabe des Trigger-Ereignisses über RS232-Schnittstelle                                 |
| Störmeldeausgang      | Synchronzustand der Baugruppe, TTL high-Pegel wenn synchron                              |
| Elektr. Anschlüsse    | 96-polige VG-Leiste DIN 41612                                                            |
| Backup-Batterietyp    | CR2032 - Knopfbatterie                                                                   |
|                       | Bei Ausfall der Versorgungsspannung Betrieb der Hardwareuhr auf Quarzbasis und           |
|                       | Speicherung der Almanach-Daten im RAM                                                    |
|                       | Lebensdauer der Lithiumbatterie: min. 10 Jahre                                           |
| Kabeltyp              | Koaxialkabel Belden H155 für Innen-/Außenmontage                                         |
|                       | Maximale Antennenkabellänge: 70 Meter                                                    |
| Betriebsspannung      | +5 V DC                                                                                  |
| Stromaufnahme         | +5V 1,1 A bis 1,4 A (Oszillatorabhängig)                                                 |
| Firmware              | Flash-EPROM, Bootstrap Loader                                                            |
| Platinentyp           | Europakarte                                                                              |
| Temperaturbereich     | Betrieb: 0 50 °C (32 122 °F)                                                             |
|                       | Lagerung: -20 70 °C (-4 158 °F)                                                          |
| Luftfeuchtigkeit      | Max. 85 % (nicht kondensierend) bei 40 °C                                                |
| Optionen              | Frequenzsynthesizer 1/8 Hz bis 10 MHz (TTL, Sinus 1,5Veff, Open-Drain)                   |
| •                     | Optional bis zu 4 serielle Schnittstellen, 3 programmierbare Schaltausgänge und          |
|                       | Zeitcode Generator (IRIG-B, AFNOR)                                                       |



| RoHS-Status des Produkts | Dieses Produkt ist RoHS-konform.                                                                                                                                                                                                |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WEEE-Status des Produkts | Dieses Produkt fällt unter die B2B-Kategorie. Zur Entsorgung kann es an den Hersteller übergeben werden. Die Versandkosten für den Rücktransport sind vom Kunden zu tragen, die Entsorgung selbst wird von Meinberg übernommen. |

#### Handbuch

Für dieses Produkt steht kein ONLINE Handbuch zur Verfügung: [4] Anfrage per Mail

#### Links:

- [1] mailto:sales@meinberg.de
- [2] https://www.meinberg.de/german/specs/timestr.htm
- [3] https://www.meinberg.de/german/specs/capstr.htm
- [4] mailto:info@meinberg.de