

HANDBUCH

TCR180USB

Time Code Receiver

Meinberg Funkuhren GmbH & Co. KG

Inhaltsverzeichnis

1	Impressum		
2	Urheberrecht und Haftungsausschluss	1	
3	Revisionshistorie		
4	Urheberrecht und Haftungsausschluss		
5	Darstellungsmethoden in diesem Handbuch5.1Darstellung von kritischen Sicherheitswarnhinweisen5.2Ergänzende Symbole bei Warnhinweisen5.3Darstellung von sonstigen Informationen5.4Allgemein verwendete Symbole	5	
6	6.4.1 Spezielle Informationen zu Geräten mit DC-Stromversorgung	7 8 9 10 12 13	
7	7.1 CE-Kennzeichnung	14 14 14 14 15	
8	Einleitung	16	
9	9.1 Lieferumfang	17 17 17	
10	10.1 Time-Code-AM-Eingang	18 19 19 19 20 20 21	
11	11.1Eingangssignale11.1.1Eingangsimpedanz11.1.2Optokopplereingang11.2Interne RTC	22 23 23 24 25	
12	2 Systeminstallation 12.1 Systemanschluss	26	

13	Inbet	riebnahme der TCR180USB	27
	13.1	Konfiguration der TCR180USB	28
	13.2	TCR180USB als Referenz setzen	
	13.3	Konfiguration der Ausgangssignale	35
14	Firmv	vare Update	37
15	Techr	nischer Anhang: TCR180USB	38
	15.1	Technische Daten TCR180USB	38
	15.2	Allgemeines zu Timecodes	39
		15.2.1 Bezeichnung von IRIG-Timecodes	39
		15.2.2 IRIG - Standardformat	
		15.2.3 AFNOR - Standardformat	42
	15.3	Übersicht der programmierbaren Signale	43
16	Ihre N	Meinung ist uns wichtig	45
17	RoHS	-Konformität	46
18	Konfo	ormitätserklärung für den Einsatz in der Europäischen Union	47
19	19 Konformitätserklärung für den Einsatz im Vereinigten Königreich		

1 Impressum

Herausgeber

Meinberg Funkuhren GmbH & Co. KG

Firmenanschrift:

Lange Wand 9 31812 Bad Pyrmont Deutschland

Telefon:

+49 (0) 52 81 / 93 09 - 0

Telefax:

+49 (0) 52 81 / 93 09 - 230

Das Unternehmen wird im Handelsregister A des Amtgerichts Hannover unter der Nummer

17HRA 100322

geführt.

Geschäftsleitung: Heiko Gerstung

Andre Hartmann Natalie Meinberg Daniel Boldt

E-Mail:
☐ info@meinberg.de

Veröffentlichungsinformationen

Revisionsdatum: 27.02.2025

PDF-Exportdatum: 27.02.2025

2 Urheberrecht und Haftungsausschluss

Die Inhalte dieses Dokumentes, soweit nicht anders angegeben, einschließlich Text und Bilder jeglicher Art sowie Übersetzungen von diesen, sind das geistige Eigentum von Meinberg Funkuhren GmbH & Co. KG (im Folgenden: "Meinberg") und unterliegen dem deutschen Urheberrecht. Jegliche Vervielfältigung, Verbreitung, Anpassung und Verwertung ist ohne die ausdrückliche Zustimmung von Meinberg nicht gestattet. Die Regelungen und Vorschriften des Urheberrechts gelten entsprechend.

Inhalte Dritter sind in Übereinstimmung mit den Rechten und mit der Erlaubnis des jeweiligen Urhebers bzw. Copyright-Inhabers in dieses Dokument eingebunden.

Eine nicht ausschließliche Lizenz wird für die Weiterveröffentlichung dieses Dokumentes gewährt (z. B. auf einer Webseite für die kostenlose Bereitstellung von diversen Produkthandbüchern), vorausgesetzt, dass das Dokument nur im Ganzen weiter veröffentlicht wird, dass es in keiner Weise verändert wird, dass keine Gebühr für den Zugang erhoben wird und dass dieser Hinweis unverändert und ungekürzt erhalten bleibt.

Zur Zeit der Erstellung dieses Dokuments wurden zumutbare Anstrengungen unternommen, Links zu Webseiten Dritter zu prüfen, um sicherzustellen, dass diese mit den Gesetzen der Bundesrepublik Deutschland konform sind und relevant zum Dokumentinhalt sind. Meinberg übernimmt keine Haftung für die Inhalte von Webseiten, die nicht von Meinberg erstellt und unterhalten wurden bzw. werden. Insbesondere kann Meinberg nicht gewährleisten, dass solche externen Inhalte geeignet oder passend für einen bestimmten Zweck sind.

Meinberg ist bemüht, ein vollständiges, fehlerfreies und zweckdienliches Dokument bereitzustellen, und in diesem Sinne überprüft das Unternehmen seinen Handbuchbestand regelmäßig, um Weiterentwicklungen und Normänderungen Rechnung zu tragen. Dennoch kann Meinberg nicht gewährleisten, dass dieses Dokument aktuell, vollständig oder fehlerfrei ist. Aktualisierte Handbücher werden unter die https://www.meinberg.de sowie die https://www.meinberg.support bereitgestellt.

Sie können jederzeit eine aktuelle Version des Dokuments anfordern, indem Sie <u>™ techsupport@meinberg.de</u> anschreiben. Verbesserungsvorschläge und Hinweise auf Fehler erhalten wir ebenfalls gerne über diese Adresse.

Meinberg behält sich jederzeit das Recht vor, beliebige Änderungen an diesem Dokument vorzunehmen, sowohl zur Verbesserung unserer Produkte und Serviceleistungen als auch zur Sicherstellung der Konformität mit einschlägigen Normen, Gesetzen und Regelungen.

3 Revisionshistorie

Version	Datum	Änderungsnotiz
1.0	03.03.2023	Grundversion
2.2	27.02.2025	Kapitel Capture-Eingänge entfernt (werden nur eingesetzt bei Konfigurationen mit CAP-In)

4 Urheberrecht und Haftungsausschluss

Die Inhalte dieses Dokumentes, soweit nicht anders angegeben, einschließlich Text und Bilder jeglicher Art sowie Übersetzungen von diesen, sind das geistige Eigentum von Meinberg Funkuhren GmbH & Co. KG (im Folgenden: "Meinberg") und unterliegen dem deutschen Urheberrecht. Jegliche Vervielfältigung, Verbreitung, Anpassung und Verwertung ist ohne die ausdrückliche Zustimmung von Meinberg nicht gestattet. Die Regelungen und Vorschriften des Urheberrechts gelten entsprechend.

Inhalte Dritter sind in Übereinstimmung mit den Rechten und mit der Erlaubnis des jeweiligen Urhebers bzw. Copyright-Inhabers in dieses Dokument eingebunden.

Eine nicht ausschließliche Lizenz wird für die Weiterveröffentlichung dieses Dokumentes gewährt (z. B. auf einer Webseite für die kostenlose Bereitstellung von diversen Produkthandbüchern), vorausgesetzt, dass das Dokument nur im Ganzen weiter veröffentlicht wird, dass es in keiner Weise verändert wird, dass keine Gebühr für den Zugang erhoben wird und dass dieser Hinweis unverändert und ungekürzt erhalten bleibt.

Zur Zeit der Erstellung dieses Dokuments wurden zumutbare Anstrengungen unternommen, Links zu Webseiten Dritter zu prüfen, um sicherzustellen, dass diese mit den Gesetzen der Bundesrepublik Deutschland konform sind und relevant zum Dokumentinhalt sind. Meinberg übernimmt keine Haftung für die Inhalte von Webseiten, die nicht von Meinberg erstellt und unterhalten wurden bzw. werden. Insbesondere kann Meinberg nicht gewährleisten, dass solche externen Inhalte geeignet oder passend für einen bestimmten Zweck sind.

Meinberg ist bemüht, ein vollständiges, fehlerfreies und zweckdienliches Dokument bereitzustellen, und in diesem Sinne überprüft das Unternehmen seinen Handbuchbestand regelmäßig, um Weiterentwicklungen und Normänderungen Rechnung zu tragen. Dennoch kann Meinberg nicht gewährleisten, dass dieses Dokument aktuell, vollständig oder fehlerfrei ist. Aktualisierte Handbücher werden unter die https://www.meinberg.de sowie die https://www.meinberg.support bereitgestellt.

Sie können jederzeit eine aktuelle Version des Dokuments anfordern, indem Sie <u>™ techsupport@meinberg.de</u> anschreiben. Verbesserungsvorschläge und Hinweise auf Fehler erhalten wir ebenfalls gerne über diese Adresse.

Meinberg behält sich jederzeit das Recht vor, beliebige Änderungen an diesem Dokument vorzunehmen, sowohl zur Verbesserung unserer Produkte und Serviceleistungen als auch zur Sicherstellung der Konformität mit einschlägigen Normen, Gesetzen und Regelungen.

5 Darstellungsmethoden in diesem Handbuch

5.1 Darstellung von kritischen Sicherheitswarnhinweisen

Sicherheitsrisiken werden mit Warnhinweisen mit den folgenden Signalwörtern, Farben und Symbolen angezeigt:

Vorsicht!

Das Signalwort bezeichnet eine Gefährdung mit einem **niedrigen Risikograd**. Dieser Hinweis macht auf einen Bedienungsablauf, eine Vorgehensweise oder Ähnliches aufmerksam, deren Nichtbefolgung bzw. Nichtausführung zu **leichten Verletzungen** führen kann.

Warnung!

Das Signalwort bezeichnet eine Gefährdung mit einem **mittleren Risikograd**. Dieser Hinweis macht auf einen Bedienungsablauf, eine Vorgehensweise oder Ähnliches aufmerksam, deren Nichtbefolgung bzw. Nichtausführung zu **schweren Verletzungen, unter Umständen mit Todesfolge**, führen kann.

Gefahr!

Das Signalwort bezeichnet eine Gefährdung mit einem hohen Risikograd. Dieser Hinweis macht auf einen Bedienungsablauf, eine Vorgehensweise oder Ähnliches aufmerksam, deren Nichtbefolgung bzw. Nichtausführung zu schweren Verletzungen, unter Umständen mit Todesfolge, führt.

5.2 Ergänzende Symbole bei Warnhinweisen

An manchen Stellen werden Warnhinweise mit einem zweiten Symbol versehen, welches die Besonderheiten einer Gefahrenquelle verdeutlicht.

Das Symbol "elektrische Gefahr" weist auf eine Stromschlag- oder Blitzschlaggefahr hin.

Das Symbol "Absturzgefahr" weist auf eine Sturzgefahr hin, die bei Höhenarbeit besteht.

Das Symbol "Laserstrahlung" weist auf eine Gefahr in Verbindung mit Laserstrahlung bin

5.3 Darstellung von sonstigen Informationen

Über die vorgenannten personensicherheitsbezogenen Warnhinweise hinaus enthält das Handbuch ebenfalls Warn- und Informationshinweise, die Risiken von Produktschäden, Datenverlust, Risiken für die Informationssicherheit beschreiben, sowie allgemeine Informationen bereitstellen, die der Aufklärung und einem einfacheren und optimalen Betrieb dienlich sind. Diese werden wie folgt dargestellt:

Achtung!

Mit solchen Warnhinweisen werden Risiken von Produktschäden, Datenverlust sowie Risiken für die Informationssicherheit beschrieben.

Hinweis:

In dieser Form werden zusätzliche Informationen bereitgestellt, die für eine komfortablere Bedienung sorgen oder mögliche Missverständnisse ausschließen sollen.

5.4 Allgemein verwendete Symbole

In diesem Handbuch und auf dem Produkt werden auch in einem breiteren Zusammenhang folgende Symbole und Piktogramme verwendet.

Das Symbol "ESD" weist auf ein Risiko von Produktschäden durch elektrostatische Entladungen hin.

Gleichstrom (Symboldefinition IEC 60417-5031)

Wechselstrom (Symboldefinition IEC 60417-5032)

Erdungsanschluss (Symboldefinition IEC 60417-5017)

Schutzleiteranschluss (Symboldefinition IEC 60417-5019)

Alle Stromversorgungsstecker ziehen (Symboldefinition IEC 60417-6172)

6 Wichtige Sicherheitshinweise

Die in diesem Kapitel enthaltenen Sicherheitshinweise sowie die besonders ausgezeichneten Warnhinweise, die in diesem Handbuch an relevanten Stellen aufgeführt werden, müssen in allen Installations-, Inbetriebnahme-, Betriebs- und Außerbetriebnahmephasen des Gerätes beachtet werden.

Beachten Sie außerdem die am Gerät selbst angebrachten Sicherheitshinweise.

Die Nichtbeachtung von diesen Sicherheitshinweisen und Warnhinweisen sowie sonstigen sicherheitskritischen Betriebsanweisungen in den Handbüchern zum Produkt oder eine unsachgemäße Verwendung des Produktes kann zu einem unvorhersehbaren Produktverhalten führen mit eventueller Verletzungsgefahr oder Todesfolge.

In Abhängigkeit von Ihrer Gerätekonfiguration oder den installierten Optionen sind einige Sicherheitshinweise eventuell für Ihr Gerät nicht anwendbar.

Meinberg übernimmt keine Verantwortung für Personenschäden, die durch Nichtbeachtung der Sicherheitshinweise, Warnhinweise und sicherheitskritischen Betriebsanweisungen in den Produkthandbüchern entstehen.

Die Sicherheit und der fachgerechte Betrieb des Produktes liegen in der Verantwortung des Betreibers!

Falls Sie weitere Hilfe oder Beratung zur Sicherheit Ihres Produktes benötigen, steht Ihnen der Technische Support von Meinberg jederzeit unter 🗗 techsupport@meinberg.de zur Verfügung.

6.1 Bestimmungsgemäße Verwendung

Das Gerät darf nur bestimmungsgemäß verwendet werden! Die maßgebliche bestimmungsgemäße Verwendung wird ausschließlich in diesem Handbuch, sowie in der sonstigen, einschlägigen und direkt von Meinberg bereitgestellten Dokumentation beschrieben.

Zur bestimmungsgemäßen Verwendung gehört insbesondere die Beachtung von spezifizierten Grenzwerten! Diese Grenzwerte dürfen nicht über- bzw. unterschritten werden!

6.2 Produktdokumentation

Die Informationen in diesem Handbuch sind für eine sicherheitstechnisch kompetente Leserschaft bestimmt.

Als kompetente Leserschaft gelten:

- Fachkräfte, die mit den einschlägigen nationalen Sicherheitsnormen und Sicherheitsregeln vertraut sind, sowie
- unterwiesene Personen, die durch eine Fachkraft eine Unterweisung über die einschlägigen nationalen Sicherheitsnormen und Sicherheitsregeln erhalten haben.

Lesen Sie das Handbuch vor der Inbetriebnahme des Produktes achtsam und vollständig.

Wenn bestimmte Sicherheitsinformationen in der Produktdokumentation für Sie nicht verständlich sind, fahren Sie nicht mit der Inbetriebnahme bzw. mit dem Betrieb des Gerätes fort!

Sicherheitsvorschriften werden regelmäßig angepasst und Meinberg aktualisiert die entsprechenden Sicherheitshinweise und Warnhinweisen, um diesen Änderungen Rechnung zu tragen. Es wird somit empfohlen, die Meinberg-Webseite 🗗 https://www.meinberg.de bzw. das Meinberg Customer Portal 🗗 https://www.meinberg.support zu besuchen, um aktuelle Handbücher herunterzuladen.

Bitte bewahren Sie die gesamte Dokumentation für das Produkt (auch dieses Handbuch) in einem digitalen oder gedruckten Format sorgfältig auf, damit sie immer leicht zugänglich ist.

6.3 Sicherheit bei der Installation

Dieses Einbaugerät wurde entsprechend den Anforderungen des Standards IEC 62368-1 (*Geräte der Audio-/Video-, Informations- und Kommunikationstechnik—Teil 1: Sicherheitsanforderungen*) entwickelt und geprüft. Bei Verwendung des Einbaugerätes in einem Endgerät (z. B. Gehäuseschrank) sind zusätzliche Anforderungen gemaß Standard IEC 62368-1 zu beachten und einzuhalten. Insbesondere sind die allgemeinen Anforderungen und die Sicherheit von elektrischen Einrichtungen (z. B. IEC, VDE, DIN, ANSI) sowie die jeweils gültigen nationalen Normen einzuhalten.

Das Gerät wurde für den Einsatz in einer industriellen oder kommerziellen Umgebung entwickelt und darf auch nur in diesen betrieben werden. Für Umgebungen mit höherem Verschmutzungsgrad gemäß Standard IEC 60664-1 sind zusätzliche Maßnahmen erforderlich, wie z. B. Einbau in einem klimatisierten Schaltschrank.

Wenn das Gerät aus einer kalten Umgebung in den Betriebsraum gebracht wird, kann Feuchtigkeit durch Kondensierung entstehen. Warten Sie, bis das Gerät an die Raumtemperatur angeglichen und absolut trocken ist, bevor Sie es in Betrieb nehmen.

Beachten Sie bei dem Auspacken, Aufstellen und vor Betrieb des Geräts unbedingt die Anleitung zur Hardware-Installation und die technischen Daten des Geräts, insbesondere Abmessungen, elektrische Kennwerte und notwendige Umgebungs- und Klimabedingungen.

Der Brandschutz muss im eingebauten Zustand sichergestellt sein. Verschließen oder verbauen Sie daher niemals Lüftungslöcher und/oder Ein- oder auslässe aktiver Lüfter.

Das Gerät mit der höchsten Masse muss in der niedrigsten Position eines Racks eingebaut werden, um den Gewichtsschwerpunkt des Gesamtracks möglichst tief zu verlagern und die Umkippgefahr zu minimieren. Weitere Geräte sind von unten nach oben zu platzieren.

Das Gerät muss vor mechanischen Beanspruchungen wie Vibrationen oder Schlag geschützt angebracht werden.

Bohren Sie **niemals** Löcher in das Gehäuse zur Montage! Haben Sie Schwierigkeiten mit der Rackmontage, kontaktieren Sie den Technischen Support von Meinberg für weitere Hilfe!

Prüfen Sie das Gehäuse vor der Installation. Bei der Montage darf das Gehäuse keine Beschädigungen aufweisen.

6.4 Elektrische Sicherheit

Dieses Meinberg-Produkt wird an einer gefährlichen Spannung betrieben.

Die Inbetriebnahme und der Anschluss des Meinberg-Produktes darf nur von einer Fachkraft mit entsprechender Eignung durchgeführt werden, oder von einer Person, die von einer Fachkraft entsprechend unterwiesen wurde.

Die Konfektionierung von speziellen Kabeln darf nur von einer Elektrofachkraft durchgeführt werden.

Arbeiten Sie niemals an stromführenden Kabeln!

Verwenden Sie **niemals** Kabel, Stecker und Buchsen, die sichtbar bzw. bekanntlich defekt sind! Der Einsatz von defekten, beschädigten oder unfachgerecht angeschlossenen Schirmungen, Kabeln, Steckern oder Buchsen kann zu einem Stromschlag führen mit eventueller Verletzungs- oder gar Todesfolge und stellt möglicherweise auch eine Brandgefahr dar!

Stellen Sie vor dem Betrieb sicher, dass alle Kabel und Leitungen einwandfrei sind. Achten Sie insbesondere darauf, dass die Kabel keine Beschädigungen (z. B. Knickstellen) aufweisen, dass sie durch die Installationslage nicht beschädigt werden, dass sie nicht zu kurz um Ecken herum gelegt werden und dass keine Gegenstände auf den Kabeln stehen.

Verlegen Sie die Leitungen so, dass sie keine Stolpergefahr darstellen.

Die Stromversorgung sollte mit einer kurzen, induktivitätsarmen Leitung angeschlossen werden. Vermeiden Sie nach Möglichkeit den Einsatz von Steckdosenleisten oder Verlängerungskabel. Ist der Einsatz einer solchen Vorrichtung unumgänglich, stellen Sie sicher, dass sie für die Bemessungsströme aller angeschlossenen Geräte ausdrücklich ausgelegt ist.

Niemals während eines Gewitters Strom-, Signal- oder Datenübertragungsleitungen anschließen oder lösen, sonst droht Verletzungs- oder Lebensgefahr, weil sehr hohe Spannungen bei einem Blitzschlag auf der Leitung auftreten können!

Bei dem Verkabeln der Geräte müssen die Kabel in der Reihenfolge der Anordnung angeschlossen bzw. gelöst werden, die in der zum Gerät gehörenden Benutzerdokumentation beschrieben ist. Stellen Sie alle Kabelverbindungen zum Gerät im stromlosen Zustand her, ehe Sie die Stromversorgung zuschalten.

Ziehen Sie **immer** Stecker an **beiden** Enden ab, bevor Sie an Steckern arbeiten! Der unsachgemäße Anschluss oder Trennung des Meinberg-Systems kann zu Stromschlag führen mit eventueller Verletzungsoder gar Todesfolge!

Bei dem Abziehen eines Steckers ziehen Sie **niemals** am Kabel selbst! Durch das Ziehen am Kabel kann sich das Kabel vom Stecker lösen oder der Stecker selbst beschädigt werden. Es besteht hierdurch die Gefahr von direktem Kontakt mit stromführenden Teilen.

5-pol. MSTB-Stecker

3-pol. MSTB-Stecker

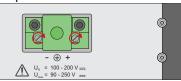


Abb.: Schraubverriegelung von MSTB-Steckern am Beispiel eines LANTIME M320

Achten Sie darauf, dass alle Steckverbindungen fest sitzen. Insbesondere bei dem Einsatz von Steckverbindern mit Schraubverriegelung, stellen Sie sicher, dass die Sicherungsschrauben fest angezogen sind. Das gilt insbesondere für die Stromversorgung, bei der 3-pol. MSTB und 5-pol. MSTB-Verbindungen (siehe Abbildung) mit Schraubverriegelung zum Einsatz kommen.

Vor dem Anschluss an die Spannungsversorgung muss zur Erdung des Gehäuses ein Erdungskabel an den Erdungsanschluss des Gerätes angeschlossen werden.

Es muss sichergestellt werden, dass bei der Montage im Schaltschrank keine Luft- und Kriechstrecken zu benachbarten spannungsführenden Teilen unterschritten werden oder Kurzschlüsse verursacht werden.

Achten Sie darauf, dass keine Gegenstände oder Flüssigkeiten in das Innere des Geräts gelangen!

Im Störfall oder bei Servicebedarf (z. B. bei beschädigten Gehäuse oder Netzkabel oder bei dem Eindringen von Flüssigkeiten oder Fremdkörpern), kann der Stromfluss unterbrochen werden. In solchen Fällen muss das Gerät sofort physisch von allen Stromversorgungen getrennt werden. Die Spannungsfreiheit muss wie folgt sichergestellt werden:

- Ziehen Sie den Stromversorgungsstecker von der Stromquelle.
- Lösen Sie die Sicherungsschrauben des geräteseitigen MSTB-Stromversorgungsstecker und ziehen Sie ihn vom Gerät.
- Verständigen Sie den Verantwortlichen für Ihre elektrische Installation.
- Wenn Ihr Gerät über eine oder mehrere Unterbrechungsfreie Stromversorgungen (USV) angeschlossen ist, muss die direkte Stromversorgungsverbindung zwischen dem Gerät und der USV zuerst getrennt werden.

6.4.1 Spezielle Informationen zu Geräten mit DC-Stromversorgung

Das Gerät muss nach den Bestimmungen der IEC 62368-1 außerhalb der Baugruppe spannungslos schaltbar sein (z. B. durch den primärseitigen Leitungsschutz).

Montage und Demontage des Steckers zur Spannungsversorgung ist nur bei spannungslos geschalteter Baugruppe erlaubt (z. B. durch den primärseitigen Leitungsschutz).

Die Zuleitungen sind ausreichend abzusichern und zu dimensionieren mit einem Anschlussquerschnitt von 1 mm 2 – 2,5 mm 2 / 17 AWG – 13 AWG).

Die Versorgung des Gerätes muss über eine geeignete Trennvorrichtung (Schalter) erfolgen. Die Trennvorrichtung muss gut zugänglich in der Nähe des Gerätes angebracht werden und als Trennvorrichtung für das Gerät gekennzeichnet sein.

6.5 Sicherheit bei der Pflege und Wartung

Reinigen Sie das Gerät ausschließlich mit einem weichen, trockenen Tuch.

Niemals das Gerät nass (z. B. mit Löse- oder Reinigungsmittel) reinigen! In das Gehäuse eindringende Flüssigkeiten können einen Kurzschluss verursachen, der wiederum zu einem Brand oder Stromschlag führen kann!

Weder das Gerät noch dessen Unterbaugruppen dürfen geöffnet werden. Reparaturen am Gerät oder Unterbaugruppen dürfen nur durch den Hersteller oder durch autorisiertes Personal durchgeführt werden. Durch unsachgemäße Reparaturen können erhebliche Gefahren für den Benutzer entstehen!

Öffnen Sie insbesondere **niemals** ein Netzteil, da auch nach Trennung von der Spannungsversorgung gefährliche Spannungen im Netzteil auftreten können. Ist ein Netzteil z. B. durch einen Defekt nicht mehr funktionsfähig, so schicken Sie es für etwaige Reparaturen an Meinberg zurück.

Einige Geräteteile können während des Betriebs sehr warm werden. Berühren Sie nicht diese Oberflächen!

Sind Wartungsarbeiten am Gerät auszuführen, obwohl das Gerätegehäuse noch warm ist, schalten Sie das Gerät vorher aus und lassen Sie es abkühlen.

7 Wichtige Produkthinweise

7.1 CE-Kennzeichnung

Dieses Produkt trägt das CE-Zeichen, wie es für das Inverkehrbringen des Produktes innerhalb des EU-Binnenmarktes erforderlich ist.

Die Anbringung von diesem Zeichen gilt als Erklärung, dass das Produkt alle Anforderungen der EU-Richtlinien erfüllt, die zum Herstellungszeitpunkt des Produktes wirksam und anwendbar sind.

Diese Richtlinien sind in der EU-Konformitätserklärung angegeben, die als → Kapitel 18 diesem Handbuch beigefügt ist.

7.2 UKCA-Kennzeichnung

Dieses Produkt trägt das britische UKCA-Zeichen, wie es für das Inverkehrbringen des Produktes in das Vereinigte Königreich erforderlich ist (mit Ausnahme von Nordirland, wo das CE-Zeichen weiterhin gültig ist).

Die Anbringung von diesem Zeichen gilt als Erklärung, dass das Produkt alle Anforderungen der britischen gesetzlichen Verordnungen (Statutory Instruments) erfüllt, die zum Herstellungszeitpunkt des Produktes anwendbar und wirksam sind.

Diese Richtlinien sind in der UKCA-Konformitätserklärung angegeben, die als → Kapitel 19 diesem Handbuch beigefügt ist.

7.3 Optimaler Betrieb des Geräts

- Achten Sie darauf, dass die Lüftungsschlitze nicht zugestellt werden bzw. verstauben, da sich sonst ein Wärmestau im Gerät während des Betriebes entwickeln kann. Auch wenn das System dafür ausgelegt ist, sich automatisch bei einer zu hohen Temperatur abzuschalten, kann das Risiko von Störungen im Betrieb und Produktschäden bei einer Überhitzung nicht ganz ausgeschlossen werden.
- Der bestimmungsgemäße Betrieb und die Einhaltung der EMV-Grenzwerte (Elektromagnetische Verträglichkeit) sind nur bei ordnungsgemäß montiertem Gehäusedeckel gewährleistet. Nur so werden Anforderungen bezüglich Kühlung, Brandschutz und die Abschirmung gegenüber elektrischen und (elektro)magnetischen Feldern entsprochen.

7.4 Entsorgung

Entsorgung der Verpackungsmaterialien

Die von uns verwendeten Verpackungsmaterialien sind vollständig recyclefähig:

Material	Verwendung	Entsorgung (Deutschland)
Polystyrol	Sicherungsrahmen/Füllmaterial	Gelber Sack, Gelbe Tonne, Wertstoffhof
PE-LD (Polyethylen niedriger Dichte)	Zubehörverpackung	Gelber Sack, Gelbe Tonne, Wertstoffhof
Pappe und Kartonagen	Versandverpackung, Zubehörverpackung	Altpapier

Für Informationen zu der fachgerechten Entsorgung von Verpackungsmaterialien in anderen Ländern als Deutschland, fragen Sie bei Ihrem zuständigen Entsorgungsunternehmen bzw. Ihrer Entsorgungsbehörde.

Entsorgung des Geräts

Dieses Produkt unterliegt den Kennzeichnungsanforderungen der Richtlinie 2012/19/EU über Elektro- und Elektronik-Altgeräte ("WEEE-Richtlinie") und trägt somit dieses WEEE-Symbol. Das Symbol weist darauf hin, dass dieses Elektronikprodukt nur gemäß den folgenden Regelungen entsorgt werden darf.

Achtung!

Das Produkt darf **nicht** über den Hausmüll entsorgt werden. Fragen Sie bei Bedarf bei Ihrem zuständigen Entsorgungsunternehmen bzw. Ihrer Entsorgungsbehörde nach, wie Sie das Produkt entsorgen sollen.

Dieses Produkt wird gemäß WEEE-Richtlinie als "B2B"-Produkt eingestuft. Darüber hinaus gehört es gemäß Anhang I der Richtlinie der Gerätekategorie "IT- und Kommunikationsgeräte".

Zur Entsorgung kann es an Meinberg übergeben werden. Die Versandkosten für den Rücktransport sind vom Kunden zu tragen, die Entsorgung selbst wird von Meinberg übernommen. Setzen Sie sich mit Meinberg in Verbindung, wenn Sie wünschen, dass Meinberg die Entsorgung übernimmt. Ansonsten nutzen Sie bitte die Ihnen zur Verfügung stehenden länderspezifischen Rückgabe- und Sammelsysteme für eine umweltfreundliche, ressourcenschonende und konforme Entsorgung Ihres Altgerätes.

8 Einleitung

Dieses Handbuch ist ein systematisch aufgebauter Leitfaden, welcher Sie bei der Inbetriebnahme Ihres Meinberg Produktes unterstützt.

Die TCR180USB ist ein Time-Code-Empfänger zur Decodierung von amplitudenmodulierten (AM) und pulsweitenmodulierten DC Level Shift (DCLS) IRIG-, AFNOR- und IEEE-Zeitcodes. Sie ist für den Betrieb an USB-Schnittstellen konzipiert und kann so zur Synchronisation eines direkt angeschlossenen PCs eingesetzt werden, auch wenn dieser weder über eine RS-232-Schnittstelle, noch über einen frei verfügbaren PCI-Steckplatz verfügt. Über den USB-Anschluss wird das Modul mit der notwendigen Betriebsspannung versorgt, so dass keine externe Spannungsversorgung erforderlich ist.

In der Variante TCR180USB-EL arbeitet die TCR180USB wie eingangs beschrieben als Time-Code-Empfänger. Zusätzlich zu dieser Grundfunktion, ist die TCR180USB ebenfalls als **Time-Code-Generator** erhältlich und ermöglicht die Ausgabe von Time-Code-Signalen sowie programmierbaren Impulsen und Signalen (TTL-Pegel). Die Konfigu-ration der Baugruppe erfolgt unter Windows durch das im kostenfreien Treiberpaket enthaltenen Meinberg Monitorprogramm (MBGMON) oder durch die Kommandozeilen-Programme des Pakets "mbgtools, welches für Linux und Windows verfügbar ist.

Die kompakte Baugruppe ist in einem Kunststoffgehäuse integriert und enthält einen Empfangsteil und Stromversorgungskomponenten. Über vier LEDs werden Informationen wie u.a. der Status der empfangenen Time-Codes sowie der Synchronisationsstatus angezeigt.

Handbuch-Updates

Meinberg-Produkte werden auch nach Markteinführung fortlaufend weiterentwickelt, so dass neue Funktionen und Verbesserungen immer wieder durch Firmware- und Software-Updates angeboten werden. Meinberg überarbeitet ebenfalls regelmäßig seine Produkthandbücher, um diesen Weiterentwicklungen Rechnung zu tragen.

Diese Handbuchversion wurde aufgrund des von der Firmware-Version 2.21 Ihrer TCR180USB sowie im MBGMON Version 3.15 angebotenen Funktionsumfangs erstellt. Bei abweichenden Software- und Firmware- Versionen sind u.a. bei der Darstellung und dem Umfang der im Kapitel → Kapitel 13, "Inbetriebnahme der TCR180USB" dargestellten Konfigurations- und Statusmöglichkeiten ggf. Unterschiede festzustellen.

9 Vor der Inbetriebnahme

9.1 Lieferumfang

Im Standard-Lieferumfang einer TCR180USB enthalten sind:

1 x 1 m Kabel RG174 (SMB-Buchse - BNC Buchse) 1 x 1,8 m USB-Schnittstellenkabel (USB-A - mirco USB-B)

Packen Sie das Produkt, sowie alle Zubehörteile vorsichtig aus und legen diese beiseite. Gleichen Sie den Lieferumfang mit der beiliegenden Packliste ab, um sicherzustellen, dass alles vorhanden ist. Fehlt etwas der aufgeführten Inhalte, wenden Sie sich bitte an Meinberg Funkuhren.

Überprüfen Sie das System auf Versandschäden. Sollte das System beschädigt oder nicht in Betrieb zu nehmen sein, kontaktieren Sie Meinberg Funkuhren unverzüglich. Nur der Empfänger (die Person oder das Unternehmen, die das System erhält) kann einen Anspruch gegen den Spediteur wegen Versandschäden geltend machen.

Meinberg Funkuhren empfiehlt Ihnen, die Originalverpackungsmaterialien für einen möglichen zukünftigen Transport aufzubewahren.

9.2 Download der Treibersoftware

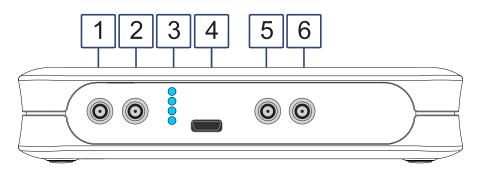
Sowohl die Konfiguration als auch das Statusmonitoring der TCR180USB kann unter Windows über das Meinberg-Monitorprogramm (mbgmon.exe) erfolgen.

Windows:

Das Treiberpaket finden Sie zum kostenlosen Download auf der Meinberg-Homepage:

thttps://www.meinberg.de/german/sw

Kommandozeilenprogramm


that https://kb.meinbergglobal.com/kb/driver_software/driver_software_for_windows/mbgtools_for_windows

Nutzer von linuxbasierten Betriebssystemen:

Bei der Verwendung eines linuxbasierten Betriebssystems finden Sie den aktuellen Linux-Treiber unter folgendem Link:

10 Anschlüsse der TCR180USB

Frontansicht

Rückansicht

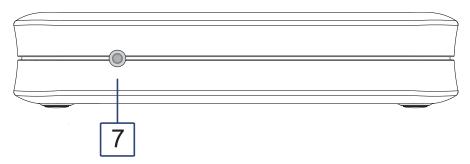


Abb. zeigt eine TCR180USB mit 1x DCLS-Eingang, 1x TC-AM-Eingang, 2x Ausgangssignale (Prog. Impulse, AM-Time-Code).

10.1 Time-Code-AM-Eingang

Eingangssignal: Time-Code AM (Amplituden-Moduliertes Sinussignal)

Signalpegel: 800 mVss bis zu 8 Vss

Impedanz: std. 600 Ohm

(optional 50 Ohm / 5 kOhm)

Isolationsspannung: 3000 V DC

Verbindungstyp: SMB-Stecker

Kabel: Koaxial, geschirmt

10.2 Time-Code-DCLS-Eingang

Eingangssignal: Time-Code DCLS, pulsweitenmoduliert

(z.B. IRIG-B00x)

Isolationsspannung: 3750 V_{rms}

interner Serienwiderstand: 330 Ohm

max. Eingangsstrom: 25 mA

Verbindungstyp: SMB-Stecker

Kabel: Koaxial, geschirmt

Fail

Tele.

Data

10.3 TCR180USB Status-LEDs

LED Anzeige

Fail: rot: Time-Sync-Error

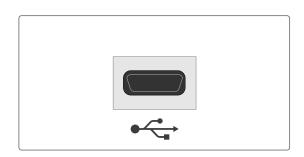
Tele.: grün: Time Code Daten konsistent

rot: Time-Code-Daten inkonsistent

Data: grün: IRIG-Daten verfügbar

rot: IRIG-Daten nicht verfügbar

gelb: Jitter zu groß


Init: blau: Initialisierungsphase

grün: Der Oszillator hat Betriebstemperatur

10.4 USB 2.0 High-Speed-Schnittstelle

Spannungsversorgung: 5 V DC über USB

Anschluss: micro-USB Typ B

10.5 Programmierbarer Pulsausgang

Ausgangssignal: Programmierbare Pulse

Signalpegel: TTL = 5 V (unbelastet),

2,5 V (mit 50 Ω belastet)

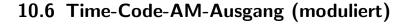
Anstiegszeit

(rise time): typ. 4 ns

Abfallzeit

(fall time): typ. 4 ns

Verbindungstyp: SMB-Stecker


Kabel: Koaxialkabel, geschirmt

Pulsausgänge: Idle

Timer
Single Shot
Cyclic Pulse
Pulse Per Second
Pulse Per Min
Pulse Per Hour
DCF77 Marks
DCLS Time Code
10 MHz Frequency
Synthesizer Frequency

PTTI 1 PPS

→ Kapitel 15.3, "Übersicht der programmierbaren Signale"

Ausgangssignal: Amplitudenmoduliertes Sinussignal

Signalpegel: 3 Vss / 1 Vss (MARK/SPACE)

an 50 Ω

Trägerfrequenz: 1 kHz (IRIG-B)

10 kHz (IRIG-A)

Verbindungstyp: SMB-Stecker

Kabel: Koaxial, geschirmt

Out

TC AM

Out

10.7 Taster BSL

Die TCR180USB verfügt auf der Rückseite über einen BSL-Taster (Boot Strap Loader). Wird dieser Taster während des Einschaltens betätigt und gehalten, aktiviert sich ein sogenannter Bootstrap-Loader des Mikroprozessors, der Befehle (z.B. Firmware-Update) über die USB-Schnittstelle erwartet. Anschließend kann die neue Firmware von dem angeschlossenen PC aus übertragen werden.

Achtung!

Führen Sie Firmware-Updates der TCR180USB ausschließlich unter fachkundiger Anleitung mit einem unserer Support-Mitarbeiter durch, da ein falsch ausgeführter Update-Vorgang die korrekte Funktion Ihres Produktes stark beeinträchtigen kann. Betätigen Sie den BSL-Taster ausschließlich für einen unmittelbar bevorstehenden Update-Vorgang.

Nach Betätigung des BSL-Tasters sind die Funktionen der TCR180USB gestoppt, da sich diese dann im Boot-Modus befindet.

Meinberg hilft Ihnen schnell und fachkundig bei Fragen rund um ein Firmware-Update Ihrer TCR180USB. Wir bieten kostenlosen Support für die gesamte Lebensdauer Ihres Meinberg-Produkts.

Meinberg - Technischer Support

Telefon: +49 (0) 5281 - 9309-888 E-Mail: techsupport@meinberg.de

11 Technische Funktion TCR180USB

AM-Zeitcodes

Die Zeitinformation wird durch Modulation der Amplitude eines Sinusträgers übermittelt. Die automatische Verstärkungsregelung des Empfängers ermöglicht die Decodierung von IRIG-AM-Signalen mit einer Amplitude des Sinusträgers von $800~\text{mV}_{ss}$ bis zu $8~\text{V}_{ss}$

DCLS-Zeitcodes

Die Zeitinformationen werden durch die Variation der Impulsweite eines TTL-Signals übermittelt. Der Eingang für DCLS-Zeitcodes besitzt wie auch der AM-Eingang einen SMB-Stecker. Der Empfängerkreis der TCR180USB ist vom Signaleingang über einen Optokoppler galvanisch getrennt.

Verarbeitung der empfangenen Time-Codes

Die empfangenen IRIG-Codes werden zur Synchronisation der internen Uhr sowie der durch einen Kondensator gepufferten Echtzeituhr (RTC) der TCR180USB verwendet, wobei jedes empfangene Telegramm einer Konsistenzprüfung unterzogen wird. Bei Erkennung eines Telegrammfehlers schaltet die interne Uhr in den Freilaufbetrieb. Die Drift der Zeitbasis wird in diesem Fall durch eine Oszillatorregelung auf etwa 1 µs/sec begrenzt.

Da die meisten gängigen IRIG-Codes kein vollständiges Datum, sondern nur eine Jahrestagsinformation enthalten, wird die vollständige Datumsinformation in der RTC und in der internen Uhr der TCR180USB gehalten.

Hinweis:

Die interne Uhr wird durch die empfangene IRIG-Zeit gesetzt. Ist diese mit einem lokalen Offset gegenüber UTC beaufschlagt, muss die Empfängerkarte ensprechend konfiguriert werden, damit das Treiberprogramm die Systemzeit des Rechners korrekt setzen kann. Das korrekte Einstellen des Offsets wird im Kapitel 13.1 (" → Kapitel 13.1, "Konfiguration der TCR180USB"") detailliert beschrieben.

Warnung!

Beeinträchtigung der Rechner-Systemzeit

Die IRIG-A und IRIG-B-Telegramme enthalten keine Ankündigungsbits für einen Wechsel "Sommer/Winterzeit" (DST/standard time) oder für das Einfügen einer Schaltsekunde, wodurch bei einem Zeitzonenwechsel oder beim Einfügen einer Schaltsekunde zunächst einen Zeitsprung der abgeleiteten UTC-Zeit also auch der Systemzeit des Rechners verursacht wird. Die TCR180USB schaltet in den Freilauf und synchronisiert dann neu. Durch diesen Zeitsprung können ausgeführte Anwendungen ggf. stark beeinträchtigt werden.

Um diese Beeinträchtigungen zu umgehen, emfiehlt Meinberg die Verwendung von IEEE-Codes zur Synchronisation von Time-Code-Modulen und Systemen, da diese Codes bereits Informationen zu UTC Offset, DST und Leap-Second-Flags enthalten.

11.1 Eingangssignale

Amplitudenmodulierte und pulsweitenmodulierte IRIG-A/B, IEEE1344, IEEE C37.118 und AFNOR NFS 87-500 Time-Codes können dem Empfänger über die SMB-Stecker zugeführt werden. Die Zuleitung sollte geschirmt sein.

Über die Monitorprogramm MBGMON muss der Empfänger so konfiguriert sein, dass er den verwendeten IRIG-Code erwartet.

Hinweis:

Die TCR180USB ist <u>nicht</u> in der Lage, gleichzeitig amplitudenmodulierte und pulsweitenmodulierte Time-Code-Signale zu decodieren. Im MBGMON muss der Empfänger auf den verwendeten Time-Code eingestellt werden. Je nach eingestelltem Time-Code wird lediglich das Signal an dem entsprechenden SMB-Stecker (TC IN AM oder TC IN DCLS) ausgewertet.

11.1.1 Eingangsimpedanz

Die IRIG-Spezifikation schreibt für modulierte Codes weder für die Ausgangsimpedanz des Senders noch für die Eingangsimpedanz des Empfängers Werte vor. Dies führte dazu, dass die Hersteller von IRIG-Komponenten diese Werte frei wählten und hierdurch nicht alle Geräte zueinander kompatibel sind.

Hat z.B. der Generator eine große Ausgangsimpedanz und der IRIG-Empfänger eine kleine Eingangsimpedanz, so wird der Signalpegel am Empfängereingang für die Auswertung zu klein. Entnehmen Sie die Eingangsimpedanzen des jeweiligen Signaleingangs dem Kapitel → Kapitel 15.1, "Technische Daten TCR180USB".

11.1.2 Optokopplereingang

Ein interner Optokoppler trennt das am Signaleingang "DC IN" eingespeiste DCLS Zeitcode-Signal galvanisch von der internen Elektronik.

Das typische DCLS-Eingangssignal hat einen TTL-Pegel (5 V). Der interne Serienwiderstand erlaubt ebenfalls den direkten Betrieb mit Eingangssignalen, die einen maximalen High-Pegel von +12 V aufweisen. Diese Abweichung vom typischen TTL-Eingangssignalpegel kann zu einer Veränderung der Signalgenauigkeit führen.

Achtung!

Bei höheren Signalspannungen als den oben genannten, muss extern ein zusätzlicher Serienwiderstand vorgesehen werden, so dass der maximale Diodenstrom von 50 mA nicht überschritten wird. Gleichzeitig sollte der Vorwiderstand so bemessen werden, dass mindestens ein Strom von 10 mA fließt, um ein sicheres Durchschalten des Optokopplers zu gewährleisten.

11.2 Interne RTC

Wird die Spannungsversorgung der TCR180USB unterbrochen, läuft die interne RTC auf Quarzbasis weiter. In diesem Fall erfolgt die Spannungsversorgung der Uhr durch einen eingebauten Kondensator, der über die USB-Spannungsversorgung geladen wird. Das ermöglicht eine unabhängige Spannungsversorgung der internen Uhr für ca. fünf Tage.

Beim erneuten Starten der TCR180USB wird Uhrzeit und Datum einmalig aus der internen RTC ausgelesen und als Systemzeit der TCR180USB gesetzt. Nach Ablauf der fünf Tage, kann die TCR180USB beim Startvorgang nicht mehr die korrekte Zeit und Datum aus der internen Uhr auslesen und sich daher nicht richtig auf das empfangene IRIG-Telegramm synchronisieren. Dann ist es notwendig, dass das Datum und die Zeit der internen Uhr im MBGMON manuell gesetzt werden. Siehe Kapitel 13, "Inbetriebnahme der TCR180USB".

Hinweis:

Meinberg empfieht generell IEEE-Codes als Referenzsignale für die Synchronisation von Time-Code-Modulen und Systemen, da diese Signale vollständige Zeit und Datumsinformationen übermitteln und die Zeit der internen Uhr dadurch nicht manuell gesetzt werden muss.

Nutzen Sie die Meinberg Knowledge Base für detaillierte Informationen zu IRIG Time Code Basics.

thttps://kb.meinbergglobal.com/kb/irig_time_code_basics#ieee_code_extensions.

11.3 Ausgangssignale

Die TCR180USB ist mit folgenden Kombinationen vom Signalausgängen erhältlich:

- 1 x programmierbarer Signalausgang + 1 x IRIG-AM-Ausgang
- 2 x programmierbare Signalausgänge
- 1 x programmierbare Signalausgänge + 1 x Capture-Eingang

Der Generator der TCR180USB erzeugt Zeitcodes im IRIG-A/B, AFNOR NF S87-500, IEEE C37.118 und IEEE 1344 Format. Diese stehen als amplitudenmodulierte und über den programmierbaren Ausgang (PP) als DCLS-Ausgangssignale zur Verfügung.

Der Empfangs- und der Generatorteil können bezüglich des zu verarbeitenden Zeitcodes und des UTC-Offsets dieses Codes unabhängig voneinander parametriert werden. So ist es möglich, die TCR180USB auch zur Codeumwandlung einzusetzen. Hierzu wird die TCR180USB mit einem DCLS-Zeitcode über den TC-IN DCLS synchronisiert und gibt über den AM-Ausgang ein amplitudenmodulierten IRIG-Code (AM) aus.

Der verwendete IRIG-Code wird mittels Monitorprogramm MBGMON oder Kommandozeilenprogramm "mbgtools" eingestellt.

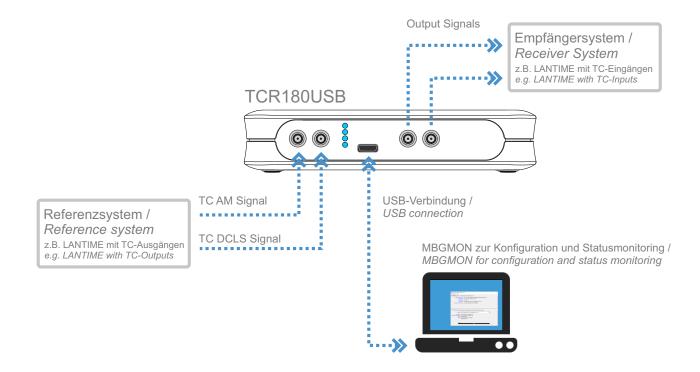
12 Systeminstallation

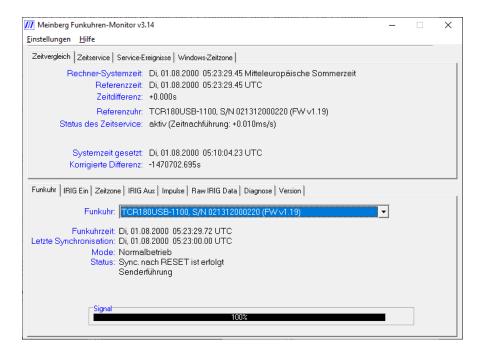
12.1 Systemanschluss

Schließen Sie die USB-Verbindung (Managementschnittstelle/Stromversorgung) an um die Initialisierungsphase zu starten (Init-LED blau). Schließen Sie nun die Referenzsignale TC-AM oder TC-DCLS an die jeweilige Buchse an.

Anwendungsbeispiel:

Die folgende schematische Darstellung zeigt eine TCR180USB, deren Synchronisierung mittels Timecode-Ausgängssignalen eines LANTIME durchgeführt wird.



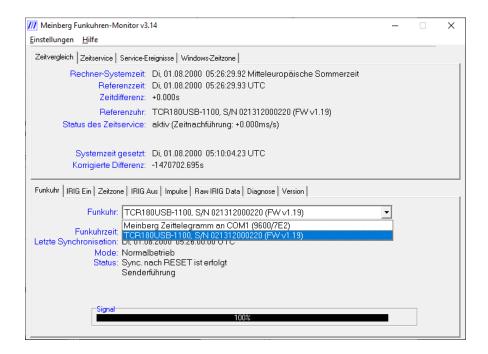

Abbildung: Synchronisierung der TCR180USB über z.B. einen LANTIME-Zeitservers als Referenzsystem

13 Inbetriebnahme der TCR180USB

In diesem Kapitel wird die initiale Inbetriebnahme einer TCR180USB über das Meinberg Monitorprogramm MBGMON beschrieben. Dabei wird in den jeweiligen Unterkapiteln auf die grundlegenden sowie auf spezifische Einstellungen näher eingegangen.

Windows Betriebssystem:

Ab Windows 7 als Betriebssystem Ihres Rechners muss das MBGMON-Programm als "Admin" gestartet werden um Einstellungen vornehmen zu können. Klicken Sie mit der rechten Maustaste auf das Programm und wählen "Als Administrator ausführen" aus.


13.1 Konfiguration der TCR180USB

Hinweis:

Die TCR180USB wird vor der Auslieferung auf Werkseinstellungen gesetzt und ist somit unkonfiguriert.

Einige grundlegende Konfigurationen sind zu Beginn durchzuführen, damit die TCR180USB ordnungsgemäß mittels Timecode-Referenzsignal synchronisiert. Auf die spezifische Konfigurationen der Ein- und Ausgänge, wird im weiteren Verlauf dieses Kapitels näher eingegangen.

1. Auswahl der Funkuhr

Im Regelfall wird die angeschlossene TCR180USB automatisch durch das Programm erkannt und als Referenzzeitquelle ausgewählt. Ist zusätzlich im PC bspw. eine Meinberg PCI-Karte installiert, kann eine manuelle Auswahl der gewünschten Uhr notwendig sein.

Klicken Sie zunächst auf den Tab "Funkuhr" im unteren Bereich des MBGMON-Programms und wählen im Dropdown-Menü die TCR180USB aus.

Diese befindet sich zunächst im "unsynchronisierten" Zustand (Mode: Freilauf), da die Zeitinformationen der Referenzuhr, von der TCR180USB noch nicht dekodiert werden konnten.

Die Status-LEDs zeigen das folgende Muster.

Fail rot Tele. grün

Data grün (Dekodierung durchgeführt)

Init aus

Statusinformationen im Überblick

Die möglichen Statusinformationen der selektierten Funkuhr (z.B. TCR180USB) werden hier näher beschrieben.

Funkuhrzeit: Die aktuelle empfangene IRIG-Zeit der ausgewählten Funkuhr.

Letzte Synchronisation: Der Zeitpunkt der letzten Synchronisation.

Mode: Der aktuelle Status der Funkuhr.

Die TCR180USB hat auf ein gültiges IRIG-Signal synchronisiert Normalbetrieb

Kein Empfangssignal Kein gültiges IRIG-Signal erkannt

Freilauf Die TCR180USB läuft frei auf Quarzbasis

Status: Sync nach RESET ist mindestens einmalig erfolgt.

Senderführung Gültiges IRIG-Signal wird erkannt.

Funkuhr läuft frei auf Quarzbasis

Kein gültiges IRIG-Signal erkannt.

2. Auswahl des Time-Codes

Klicken Sie den Tab "IRIG EIN" und wählen dann im Drop-Down-Menü das vom Referenzsystem eingespeiste IRIG-Signal.

Hinweis:

Meinberg empfieht generell als Referenzsignal IEEE 1344 für die Synchronisation von Time-Code-Modulen und Systemen, da so u.a. zusätzliche UTC-Offset und Schaltsekundeninformationen übermittelt werden.

Nutzen Sie die Meinberg Knowledge Base für detaillierte Informationen zu IRIG Time Code Basics.

https://kb.meinbergglobal.com/kb/irig_time_code_basics#ieee_code_extensions.

Damit die TCR180USB alle vom Referenzsystem empfangenen Telegramminformationen des Time-Codes auswerten kann, müssen sowohl das vom Referenzsystems gesendete IRIG-Code, als auch der zugehörige IRIG-Eingang der TCR180USB identisch eingestellt werden.

Beispiel:

Wenn das Referenzsystem beispielsweise das DCLS-Zeitcode-Format IEEE 1344 (DCLS) ausgibt, muss die TCR180USB so konfiguriert werden, dass der IRIG-Code IEEE 1344 über den "TC IN" DC-Anschluss der TCR180USB ausgewertet werden kann.

29

3. Einstellen des Offsets

Empfohlen ist die Verwendung der UTC-Zeitbasis als Empfangs- und Übertragungsstandard für Zeitcode-Signale.

Anders als bei der Verwendung des IRIG-Code IEEE 1344 als Referenzsignal, bei dem der "IRIG-Offset zu UTC" bereits in den übertragenen Daten als Information enthalten ist (siehe Infobox vorherige Seite), muss bei z.B. B006/B007 manuell ein Offset zu Kompensation eingetragen werden.

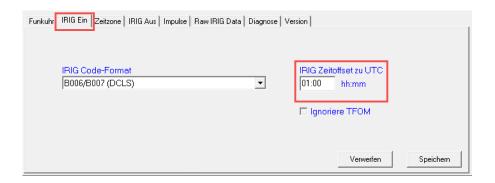
Einstellung des IRIG Zeitoffsets zu UTC

Die Zeitzone des Referenzsystems und des Empfängers (z.B. TCR180USB) ist UTC.

IRIG-Code	Offset
IEEE 1344	Übermittlung des Offsets (automatisch)
B006/B007	00:00

Wenn aber das Referenzsystem selbst den Zeitcode nicht mit UTC, sondern mit einem lokalen Zeitoffset (z.B. MEZ) ausgibt, muss dieser Offset kompensiert werden. Dies ist notwendig um ein korrekte Synchronisation der TCR180USB zu gewährleisten.

Vorsicht!

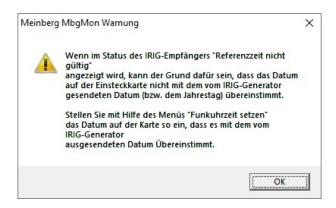


Im Eingangssignal verursacht der Sommer-/Winterzeitwechsel (Start/End of DST) einen Zeitsprung der abgeleiteten UTC-Zeit, also auch der Rechner-Systemzeit.

Meinberg empfiehlt daher die Verwendung von IEEE-Codes zur Synchronisation von Time-Code-Modulen und Systemen, da diese sowohl einen UTC/UTC-Offset als auch einen Ankündigungsbit enthalten, welches innerhalb von 59 Sekunden vor dem Sommer-/Winterzeitwechsel gesetzt wird und somit einen Zeitsprung verhindert.

In diesem Beispiel muss die TCR180USB auf den lokalen Zeitoffset '+00:60 min' (MEZ = UTC + 1 h) eingestellt werden.

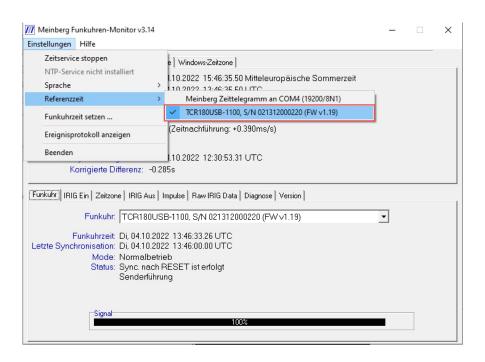
IRIG-Code	Offset
IEEE 1344	Übermittlung des Offsets (automatisch)
B006/B007	01:00 (hh:mm)

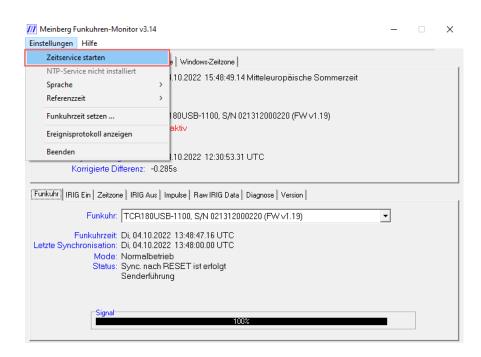

Die Status-LEDs zeigen das folgende Muster.

Fail	aus
Tele.	grün
Data	grün
Init	aus

4. Manuelles Setzen der TCR180USB-Systemzeit

Bei einer Unterbrechung der Stromversorgung der TCR180USB wird die Real Time Clock (RTC), welche Datum und Uhrzeit speichert, noch für ca. fünf Tage durch den verbauten Goldcap mit Spannung versorgt. Bleibt die TCR180USB jedoch länger ohne Stromversorgung, stellt die RTC beim erneuten Einschalten ein falsches Datum bzw. eine falsche Zeit bereit (siehe Screenshot). Dies kann schwerwiegende Folgen für laufende Anwendungen nach sich ziehen.


Um dies zu korrigieren, muss mindestens das Datum und idealerweise Datum und Uhrzeit korrekt gesetzt werden.


- 1. Klicken Sie auf "Einstellungen" und dann auf "Funkuhrzeit setzen".
- 2. Setzen Sie durch Betätigen der Schaltfläche "PC-Zeit zum Gerät übertragen" das aktuelle Datum und die Uhrzeit, damit das Datum und die ungefähre Zeit auf der TCR180USB gesetzt werden.

13.2 TCR180USB als Referenz setzen

Nachdem die Konfiguration abgeschlossen ist, ist die TCR180USB in der Regel automatisch als Referenzquelle für den angeschlossenen Rechner ausgewählt. Ist dies nicht der Fall, gehen Sie zu Einstellungen -> Referenzzeit und wählen die TCR180USB aus, um diese für die Synchronisierung des Rechners zu verwenden (siehe Abb.)

Zeitservice starten

Nachdem alle notwendigen IRIG-Einstellungen getroffen wurden, kann der Zeitservice gestartet werden.

Klicken Sie dazu auf Einstellungen "Zeitservice starten". Die zuvor ausgewählte "Funkuhr" wird für die Synchronisierung der Rechnerzeit verwendet.

Statusinformationen:

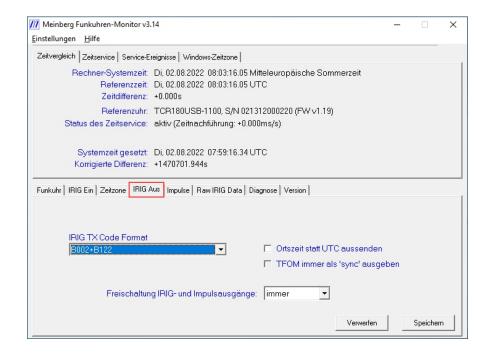
Der Tab "Zeitvergleich" gibt einen ersten Überblick über die Rechner-Systemzeit und die Zeit der Referenzquelle (z.B. TCR180USB), sowie deren momentaner Zeitdifferenz.

Referenzuhr: Ausgewählte Referenzuhr für die Synchronisierung des Rechners.

Status des Zeitservice:

Nicht aktiv Zeitservice läuft nicht.

Aktiv Zeitservice ist aktiv und synchronisiert die Rechnerzeit.


warte bis Uhr synchron... Zeitservice ist aktiv aber Uhr noch nicht synchron.

warte auf Referenzzeit... Zeitservice gestartet aber Verbindung zur Uhr unterbrochen.

Systemzeit gesetzt: Zeitpunkt, wann die Rechnerzeit durch den Zeitservice gesetzt wurde (falls dies nötig war).

Korrigierte Differenz: Die korrigierte Zeitdifferenz zum anzeigten Zeitpunkt.

13.3 Konfiguration der Ausgangssignale

Die Ausgangssignale einer TCR180USB können über den entsprechenden Tab im unteren Bereich des MBGMON-Programms konfiguriert werden.

Es werden immer das DCLS-Signal und das entsprechende AM-Signal parallel erzeugt. Das DCLS-Signal kann als auswählbares Signal über den programmierbaren Pulsausgang ausgegeben werden, das AM-Signal nur über eine TCR180USB mit TC-AM-Ausgang.

Time-Code Ausgangssignale

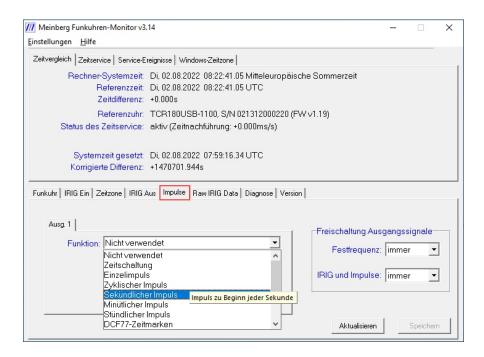
Klicken Sie zunächst auf den Tab "IRIG Aus" und wählen aus der Drop-Down-Liste das Zeitcode-Format aus, welches generiert werden soll.

Ortszeit statt UTC aussenden: Wählen Sie aus, ob die Ausgabe des Zeitcodes auf UTC-Zeitbasis oder per

lokaler Zeit erfolgen soll. Bei "lokaler Zeit" (Ortszeit) erfolgt die Umrechnung

gemäß der Einstellungen des Tab "Zeitzone".

TFOM immer alsAuch im asynchronen Zustand der TCR180USB wird der Zeitcode mit einem 'sync' ausgeben:
Wert 0 (synchron) gesendet. (TFOM wird nur bei IEEE-Codes unterstützt)


Freischaltung IRIG- und Impulsausgänge:

nach sync Die Ausgabe der Signale erfolgt erst, nachdem sich der Empfänger das erste

Mal erfolgreich auf eines der eingehenden Signale synchronisiert hat.

immer Die Ausgabe der Signale wird sofort nach dem Einschalten aktiviert.

Programmierbare Ausgangssignale

Je nach Ausführung der TCR180USB können bis zu zwei programmierbare Ausgänge konfiguriert werden.

Klicken Sie zunächst auf den Tab "Impulse" und wählen aus der Drop-Down-Liste das Signal aus, welcher an der mit "PP" bezeichneten Buchse ausgegeben werden soll.

Freischaltung Ausgangssignale

nach Sync: Die Ausgabe der Signale erfolgt erst, nachdem sich der Empfänger das erste

Mal erfolgreich auf ein eingehendes Signal synchronisiert hat.

immer: Die Ausgabe der Signale wird sofort nach dem Einschalten aktiviert.

Timeout: Bei DCF77-Zeitmarken siehe

→ Kapitel 15.3, "Übersicht der programmierbaren Signale"

14 Firmware Update

Achtung!

Führen Sie Firmware-Updates der TCR180USB ausschließlich unter fachkundiger Anleitung mit einem unserer Support-Mitarbeiter durch, da ein falsch ausgeführter Update-Vorgang die korrekte Funktion Ihres Produktes stark beeinträchtigen kann.

Meinberg hilft Ihnen schnell und fachkundig bei Fragen rund um ein Firmware-Update Ihrer TCR180USB. Wir bieten kostenlosen Support für die gesamte Lebensdauer Ihres Meinberg-Produkts.

Meinberg - Technischer Support

Telefon: +49 (0) 5281 - 9309- 888 E-Mail: techsupport@meinberg.de

15 Technischer Anhang: TCR180USB

15.1 Technische Daten TCR180USB

Empfängereingang: AM Eingang:

Galvanisch getrennt durch Übertrager Impedanz: 600 Ω

Empfangssignal: ca. 800 mV $_{ss}$ bis 8 V $_{ss}$ (Mark) andere Bereiche auf Anfrage

DC-Level Shift Eingang:

Galvanisch getrennt durch Optokoppler Interner Serienwiderstand: 330 Ω Maximaler Eingangsstrom: 50 mA Diodenspannung: 1.0 V...1.3 V

Dekodierung: Auswertung folgender Eingangssignale möglich:

IRIG-A002/A003/A132/A133

IRIG-B002/B003/B006/B007/B122/B123/B126/B127

AFNOR NFS 87-500 IEEE 1344, IEEE C37.118

Genauigkeit der

Zeitbasis: \pm 1 μ sec gegenüber IRIG-Referenzmarker

Erforderliche Genauigkeit

der Zeitcode-Quelle: \pm 100 ppm

Freilaufbetrieb: Automatische Umschaltung auf Quarzzeitbasis, Genauigkeit ca. 2E-9

wenn Decoder vorher länger als eine Stunde synchron war.

Betriebssicherheit: Ein Hardware-Watchdog generiert ein sicheres Unterspannungsreset. Ein Software-

Watchdog überwacht den Programmablauf und generiert bei Fehlfunktion einen Reset.

Stromversorgung: Über USB: +5 V, ca. 380 mA

Gehäuseabmessungen: 73 mm x 117 mm x 24 mm (L x B x H)

Betriebstemperatur: 0...50 °C

Luftfeuchtigkeit: Max. 85 %

15.2 Allgemeines zu Timecodes

Schon zu Beginn der fünfziger Jahre erlangte die Übertragung codierter Zeitinformation allgemeine Bedeutung. Speziell das amerikanische Raumfahrtprogramm forcierte die Entwicklung dieser zur Korrelation aufgezeichneter Messdaten verwendeten Timecodes. Die Festlegung von Format und Gebrauch dieser Signale war dabei willkürlich und lediglich von den Vorstellungen der jeweiligen Anwender abhängig. Es entwickelten sich hunderte unterschiedlicher Timecodes von denen Anfang der sechziger Jahre einige von der "Inter Range Instrumentation Group" (IRIG) standardisiert wurden, die heute als "IRIG-Timecodes" bekannt sind.

Neben diesen Zeitsignalen werden jedoch weiterhin auch andere Codes, wie z. B. NASA36, XR3 oder 2137, benutzt. Die TCR180USB beschränkt sich jedoch auf die Decodierung der Formate IRIG-A, IRIG-B, AFNOR NF S87-500 oder IEEE 1344 bzw. IEEE C37.118, einem Nachfolger von IEEE 1344.

Beim AFNOR-Timecode handelt es sich um eine Variante des IRIG-B Formates. Bei diesem wird anstatt der "Control Functions" des IRIG-Timecodes die komplette Datumsinformation übertragen.

Besuchen Sie unsere Homepage, um detaillierte Informationen zu IRIG-Timecodes zu erhalten:

**Informationen zu erhalten:

**Informationen zu erhalten:

**Informationen zu erhalten:

**Informationen zu erhalten:

**Informat

15.2.1 Bezeichnung von IRIG-Timecodes

Die Identifikation der verschiedenen IRIG-Timecodes ist im IRIG Standard 200-04 spezifiziert und erfolgt über eine dreistellige Zahlenfolge mit einem vorangestellten Buchstaben. Die einzelnen Zeichen haben folgende Bedeutung:

Buchstabe	Festlegung der Impulszahl	A B E G	1000 pps 100 pps 10 pps 10000 pps
1.Ziffer	Impulsform	0 1	DC Level Shift (DCLS), pulsweitenmoduliert Sinusträger, amplitudenmoduliert
2.Ziffer	Trägerfrequenz	0 1 2 3	kein Träger (DC Level Shift) 100 Hz, Zeitauflösung 10 ms 1 kHz, Zeitauflösung 1 ms 10 kHz, Zeitauflösung 100 μ s
3.Ziffer	Timecode-Inhalt	0 1 2 3 4 5 6 7	BCD(TOY), CF, SBS BCD(TOY), CF BCD(TOY), SBS BCD(TOY), SBS BCD(TOY), BCD(YEAR), CF, SBS BCD(TOY), BCD(YEAR), SBS BCD(TOY), BCD(YEAR) BCD(TOY), BCD(YEAR)

BCD: Zeit und Tag des Jahres im BCD-Format

CF: Control-Functions (frei belegbar)

SBS: Anzahl der Sekunden des Tages seit Mitternacht (binär)

Neben den IRIG-Standards existieren auch Spezifikationen durch andere Gremien, die spezielle Erweiterungen definieren.

AFNOR: Code lt. NF S87-500, 100 pps, AM-Sinussignal, 1-kHz-Träger,

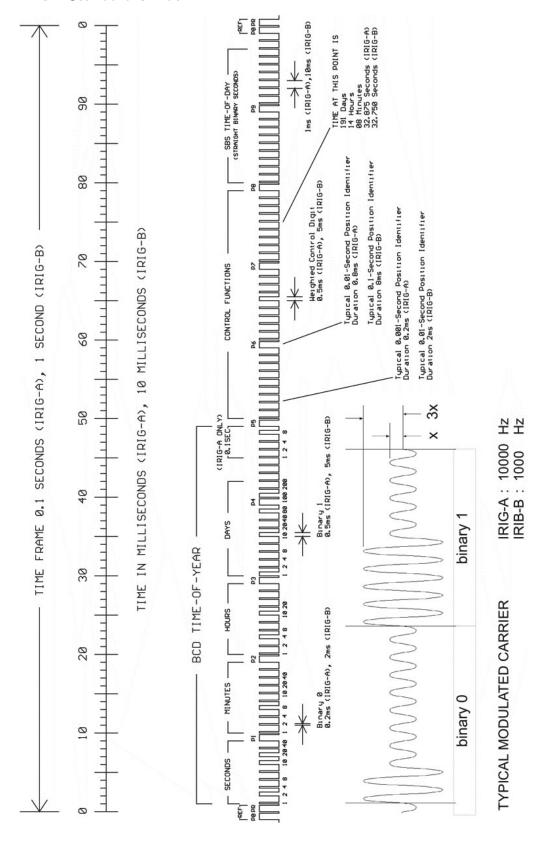
Jahresuhrzeit in BCD-Code, vollständiges Datum, Tagessekunden in SBS-Code,

Ausgangspegel vom Standard vorgegeben.

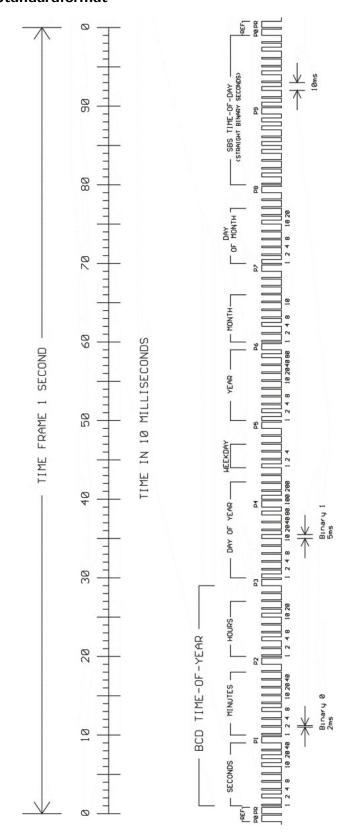
IEEE 1344: Code lt. IEEE 1344-1995, 100 pps, AM-Sinussignal, 1-kHz-Träger, Jahresuhrzeit

in BCD-Code, Tagessekunden in SBS-Code, IEEE-1344-Erweiterungen für Datum, Sommer-/Winterzeit und Schaltsekunde im Control Funktions Segment (CF).

(s.a. Tabelle "Belegung des CF-Segmentes beim IEEE-1344-Code")


IEEE C37.118: Wie IEEE 1344, jedoch mit gedrehtem Vorzeichenbit für den UTC-Offset

NASA 36: 100 pps, AM-Sinussignal, 1-kHz-Träger,


Zeitauflösung: 10 ms (DCLS), 1 ms (modulierte Trägerwelle)

Jahresuhrzeit in BCD-Code: 30 Bits - Sekunden, Minuten, Stunden und Tage

15.2.2 IRIG - Standardformat

15.2.3 AFNOR - Standardformat

15.3 Übersicht der programmierbaren Signale

In Meinberg-Systemen mit programmierbaren Impulsausgängen, stehen Ihnen je nach System mehr oder weniger der folgenden Signaloptionen zur Verfügung:

Idle

Über den Modus "Idle" können die programmierbaren Impulsausgänge einzeln deaktiviert werden.

Timer

Im "Timer" Modus simuliert der Ausgang eine Schaltuhr mit Tagesprogramm. Auf jedem Ausgang der Funkuhr sind je drei Ein- und drei Ausschaltzeiten am Tag programmierbar. Soll eine Schaltzeit programmiert werden, so muss die Einschaltzeit "ON" und die zugehörige Ausschaltzeit "OFF" eingetragen werden. Liegt der Einschaltzeitpunkt später als der Ausschaltzeitpunkt, so wird das Schaltprogramm derart interpretiert, dass der Ausschaltzeitpunkt am darauffolgenden Tag liegt, so dass das Signal weiterhin über Mitternacht hinaus anliegt.

Ein Programm On Time 23:45:00, Off Time 0:30:00 würde demnach bewirken, dass am Tag n um 23.45 Uhr der Ausgang aktiviert, und am Tag n+1 um 0.30 Uhr deaktiviert wird. Sollen eines oder mehrere der drei Programme ungenutzt bleiben, so müssen in die Felder "ON" und "OFF" nur gleiche Schaltzeiten eingetragen werden. Mit "Signal" wird der Aktiv-Zustand für die Schaltzeiten angegeben. Ist "Normal" angewählt, liegt am entsprechenden Ausgang im inaktiven Zustand (außerhalb einer Schaltzeit) ein low-Pegel, und im aktiven Zustand ein high-Pegel an. Ist dagegen "Inverted" angewählt, liegt im inaktiven Zustand ein high-Pegel und im aktiven Zustand ein low-Pegel an.

Single Shot

Der "**Single Shot**" Modus erzeugt pro Tag einen einmaligen Impuls definierter Länge. Im Feld "**Time**" wird die Uhrzeit eingegeben, zu der ein Impuls erzeugt werden soll. Der Wert "**Length**" erlaubt die Einstellung der Impulslänge in 10 ms Schritten zwischen *10 ms* und *10000 ms* (10 Sekunden). Eingaben, die nicht im 10 ms Raster liegen, werden abgerundet.

Cyclic Pulse

Im Modus "Cyclic Pulse" werden zyklisch wiederholter Impulse erzeugt. Die Zeit zwischen zwei Impulsen (die Zykluszeit) muss immer in Stunden, Minuten und Sekunden eingegeben werden. Zu beachten ist, dass die Impulsfolge immer mit dem Übergang 0.00.00 Uhr Ortszeit synchronisiert wird. Dies bedeutet, dass der erste Impuls an einem Tag immer um Mitternacht ausgegeben wird, und ab hier mit der gewählten Zykluszeit wiederholt wird. Eine Zykluszeit von $2\,s$ würde also Impulse um 0.00.00 Uhr, 0.00.02 Uhr, 0.00.04 Uhr etc. hervorrufen. Grundsätzlich ist es möglich jede beliebige Zykluszeit zwischen 0 und 24 Stunden einzustellen, jedoch sind meistens nur Impulszyklen sinnvoll, die immer gleiche zeitliche Abstände zwischen zwei Impulsen ergeben. So würden zum Beispiel bei einer Zykluszeit von $1\,$ Stunde $45\,$ Min Impulse im Abstand von 6300 Sekunden ausgegeben. Zwischen dem letzten Impuls eines Tages und dem 0.00 Uhr Impuls würden jedoch nur 4500 Sekunden liegen.

Pulse-per-Second, Pulse-per-Minute, Pulse-per-Hour

Diese Modi erzeugen Impulse definierter Länge pro Sekunde, pro Minute bzw. pro Stunde. Die angezeigte Optionen sind für alle drei Betriebsarten gleich. Der Wert "Pulse Length" bestimmt die Impulslänge zwischen 10 ms und 10000 ms (10 Sekunden).

DCF77 Marks

Im Betriebsmodus "DCF77 Marks" wird der gewählte Ausgang in den DCF77-Simulationsmodus geschaltet: Der Ausgang wird im Takt der für den DCF77 Code typischen 100 und 200 ms Impulse (logisch 0/1) aktiviert. Durch das Fehlen der 59. Sekundenmarke wird die Minutenmarke angekündigt.

DCF77-like M59

In der 59. Sekundenmarke wird ein 500 ms-Impuls gesendet.

Im Feld "**Timeout**" kann eingegeben werden, nach wie vielen Minuten im Falle eines Freilaufes der Funkuhr der DCF77-Simulationsausgang abgeschaltet werden soll. Wird hier der Wert *Null* eingegeben, ist die Timeout-Funktion inaktiv, so dass die simulierte DCF77-Ausgabe nur manuell abgeschaltet werden kann.

Position OK, Time Sync und All Sync

Zur Ausgabe des Synchronisationsstatus der Funkuhr sind drei verschiedene Modi auswählbar. Im Modus "**Position OK**" wird der Ausgang aktiviert, wenn der GNSS-Empfänger genügend Satelliten empfängt, um seine Position zu berechnen.

Der Modus "Time Sync" aktiviert den Ausgang immer dann, wenn die interne Zeitbasis der Funkuhr mit der Zeitbasis der GNSS-Referenz synchron läuft. Der Modus "All Sync" führt eine UND-Verknüpfung beider Zustände durch, d. h. der entsprechende Ausgang wird immer dann aktiviert, wenn die Position berechnet werden kann UND die interne Zeitbasis mit der Zeitbasis der Referenzkonstellation synchronisiert wurde.

DCLS-Timecode

DC-Level-Shift Timecode. Die Auswahl des Timecodes wird über den Bereich "Uhr o IRIG-Einstellungen" im Webinterface vorgenommen.

1 MHz Frequency, 5 MHz Frequency, 10 MHz Frequency

Feste Frequenzeinstellung des programmierbaren Impulsausgangs von 1, 5 bzw. 10 MHz mit fester Phasenbeziehung zum PPS (d. h. die fallende Flanke des Signals ist gekoppelt an die steigende Flanke vom PPS).

Synthesizer Frequency

Mit diesem Modus wird eine individuelle Frequenz ausgegeben. Die Ausgabe des Frequenzsynthesizers wird über den Bereich "Uhr \rightarrow Synthesizer" im Webinterface vorgenommen.

PTTI 1PPS

Bei diesem Modus wird ein PPS von 20 μs Pulsweite ausgegeben.

16 Ihre Meinung ist uns wichtig

Dieses Benutzerhandbuch soll Sie bei der Handhabung Ihres Meinberg Produktes unterstützen und stellt Ihnen u. a. wichtige Informationen für die Konfiguration und das Statusmonitoring bereit.

Haben Sie Teil an der kontinuierlichen Verbesserung der bereitgestellten Informationen dieses Benutzerhandbuchs. Bei handbuchrelevanten Verbesserungsvorschlägen und Anregungen sowie technischen Fragen wenden Sie sich bitte an unseren Technischen Support.

Meinberg – Technischer Support

Telefon: +49 (0) 5281 / 9309 - 888 E-Mail: ■ techsupport@meinberg.de

17 RoHS-Konformität

Befolgung der EU-Richtlinie 2011/65/EU (RoHS)

Wir erklären hiermit, dass unsere Produkte den Anforderungen der Richtlinie 2011/65/EU und deren deligierten Richtlinie 2015/863/EU genügen und dass somit keine unzulässigen Stoffe im Sinne dieser Richtlinie in unseren Produkten enthalten sind.

Wir versichern, dass unsere elektronischen Geräte, die wir in der EU vertreiben, keine Stoffe wie Blei, Kadmium, Quecksilber, sechswertiges Chrom, polybrominatierte Biphenyle (PBBs) und polybrominatierten Diphenyl-Äther (PBDEs), Bis(2-ethylhexyl)phthalat (DEHP), Benzylbutylphthalat (BBP), Dibutylphthalat (DBP) oder Diisobutylphthalat (DIBP) über den zugelassenen Richtwerten enthalten.

18 Konformitätserklärung für den Einsatz in der Europäischen Union

EU-Konformitätserklärung

Doc ID: -27.02.2025

HerstellerMeinberg Funkuhren GmbH & Co. KGManufacturerLange Wand 9, D-31812 Bad Pyrmont

erklärt in alleiniger Verantwortung, dass das Produkt, declares under its sole responsibility, that the product

Produkt be zeich nung

TCR180USB

Product Designation

2011/65/EU + 2015/863/EU

auf das sich diese Erklärung bezieht, mit den folgenden Normen und Richtlinien übereinstimmt: to which this declaration relates is in conformity with the following standards and provisions of the directives:

EMV – Richtlinie EN 61000-6-2:2019

EMC Directive EN IEC 61000-6-3:2021

EN 55035:2017/A11:2020

EN 55032:2015 + AC:2016 + A11:2020 + A1:2020

Niederspannungsrichtlinie EN IEC 62368-1:2020 + A11:2020

Low-voltage Directive

2014/35/EU

RoHS – Richtlinie EN IEC 63000:2018

RoHS Directive

EU-Konformitätserklärung

Doc ID: -27.02.2025

Diese EU-Konformitätserklärung umfasst alle nachfolgend aufgeführten Gerätekonfigurationen: This UKCA Declaration of Conformity further covers all the device configurations listed below:

CONFORMITYADDPRODUCTNAMES

Bad Pyrmont, den 27.02.2025

Aron Meinberg Quality Management

19 Konformitätserklärung für den Einsatz im Vereinigten Königreich

UKCA Declaration of Conformity

Doc ID: -27.02.2025

Manufacturer Meinberg Funkuhren GmbH & Co. KG

Lange Wand 9 31812 Bad Pyrmont

Germany

declares that the product

SI 2012/3032

Product Designation TCR180USB

to which this declaration relates, is in conformity with the following standards and provisions of the following regulations under British law:

Electromagnetic Compatibility EN IEC 61000-6-2:2019 Regulations 2016 (as amended) EN IEC 61000-6-3:2021 SI 2016/1091 EN 55035:2017/A11:2020 EN 55032:2015 + AC:2016 + A11:2020 + A1:2020 Electrical Equipment (Safety) EN IEC 62368-1:2020/A11:2020 Regulations 2016 (as amended) SI 2016/1101 EN IEC 63000:2018 The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012 (as amended)

UKCA Declaration of Conformity Doc ID: -27.02.2025

This UKCA Declaration of Conformity further covers all the device configurations listed below:

CONFORMITYADDPRODUCTNAMES

Bad Pyrmont, Germany, dated 27.02.2025

Aron Meinberg Quality Management