Technische Daten

Inbetriebnahme

GEN170TGP
Impressum

Meinberg Funkuhren GmbH & Co. KG
Lange Wand 9
D-31812 Bad Pyrmont

Telefon: +49 (0) 52 81 / 9309-0
Telefax: +49 (0) 52 81 / 9309-30

Internet: http://www.meinberg.de
Email: info@meinberg.de

18. Dezember, 2009
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impressum</td>
<td>2</td>
</tr>
<tr>
<td>Komplettsystem GEN170TGP</td>
<td>5</td>
</tr>
<tr>
<td>Allgemeines DCF77</td>
<td>6</td>
</tr>
<tr>
<td>GEN170</td>
<td>7</td>
</tr>
<tr>
<td>Übersicht GEN170</td>
<td>7</td>
</tr>
<tr>
<td>Bedienelemente an der Frontplatte</td>
<td>8</td>
</tr>
<tr>
<td>FAIL LED und LOCK LED</td>
<td>8</td>
</tr>
<tr>
<td>LC Display</td>
<td>8</td>
</tr>
<tr>
<td>MENU Key</td>
<td>8</td>
</tr>
<tr>
<td>Taste CLR/ACK</td>
<td>8</td>
</tr>
<tr>
<td>Taste NEXT</td>
<td>8</td>
</tr>
<tr>
<td>Taste INC</td>
<td>8</td>
</tr>
<tr>
<td>Die Menüs ein einzelnen</td>
<td>9</td>
</tr>
<tr>
<td>Hauptmenü</td>
<td>9</td>
</tr>
<tr>
<td>Menü SETUP</td>
<td>10</td>
</tr>
<tr>
<td>SETUP INITIAL TIME</td>
<td>10</td>
</tr>
<tr>
<td>ADJUST SECONDS</td>
<td>10</td>
</tr>
<tr>
<td>SETUP TIME ZONE</td>
<td>11</td>
</tr>
<tr>
<td>SETUP DAYLIGHT SAV ON/OFF</td>
<td>11</td>
</tr>
<tr>
<td>SETUP LEAP SECOND</td>
<td>12</td>
</tr>
<tr>
<td>SETUP SERIAL PORT PARM</td>
<td>12</td>
</tr>
<tr>
<td>SETUP SER. STRING TYPE</td>
<td>12</td>
</tr>
<tr>
<td>SETUP SERIAL OUTPUT</td>
<td>13</td>
</tr>
<tr>
<td>SETUP TIMECODE OUT</td>
<td>13</td>
</tr>
<tr>
<td>INIT USER PARMS</td>
<td>14</td>
</tr>
<tr>
<td>Standardparameter wiederherstellen</td>
<td>14</td>
</tr>
<tr>
<td>Firmware Updates</td>
<td>14</td>
</tr>
</tbody>
</table>
Komplettsystem GEN170TGP

Das System GEN170TGP besteht aus der GEN170, der DCF77-Simulatorkarte SIM77PV4, und dem Netzteil PSK105, betriebsbereit in einem Tischgehäuse montiert. Die Schnittstelle sowie die Ein-/Ausgangssignale der Baugruppe GEN170TGP sind an der Rückwand des Systems über Steckverbinder herausgeführt. Die einzelnen Baugruppen werden nachfolgend beschrieben.
Allgemeines DCF77

Der Langwellensender DCF77 steht in Mainflingen bei Frankfurt am Main und dient der Verbreitung der amtlichen Uhrzeit der Bundesrepublik Deutschland, das ist die Mitteleuropäische Zeit MEZ(D) bzw. die Mitteleuropäische Sommerzeit MESZ(D). Der Sender wird durch die Atomuhrenanlage der Physikalisch Technischen Bundesanstalt (PTB) in Braunschweig gesteuert und sendet Informationen über die aktuelle Uhrzeit, das Datum und den Wochentag. Innerhalb jeder Minute wird einmal die komplette Zeitinformation übertragen. Die hochkonstante Trägerfrequenz des Zeitsignals beträgt 77.5 kHz. Das Trägersignal ist sowohl amplituden- als auch phasenmoduliert.

Die Trägeramplitude wird zu Beginn jeder Sekunde für 0.1 sec oder 0.2 sec auf ca. 25% abgesenkt. Die so entstehenden Sekundenmarken enthalten binär codiert die Zeitinformation. Sekundenmarken mit einer Dauer von 0.1 sec entsprechen einer binären “0” und solche mit 0.2 sec einer binären “1”. Die Information über die Uhrzeit und das Datum sowie einige Parity- und Statusbits finden sich in den Sekundenmarken 16 bis 58 jeder Minute. Durch das Fehlen der 59. Sekundenmarke wird die Minutenmarke angekündigt.

Die Decodierung der Amplitudenmodulation (AM) ist mit einer relativ einfachen Empfangsschaltung möglich, während die Decodierung der Phasenmodulation einen höheren Aufwand erfordert, jedoch auch eine wesentlich genauere Zeitsynchronisation ermöglicht.

Abb.: Decodierschema

M Minutenmarke (0,1 s)
R Aussendung über Reserveantenne
A1 Ankündigung der Zeittumschaltung MEZ nach MESZ oder MESZ nach MEZ
Z1, Z2 Zonenzeitbits
 Z1, Z2 = 0,1: Standardzeit (MEZ)
 Z1, Z2 = 1,0: Sommerzeit (MESZ)
A2 Ankündigung einer Schaltsekunde
S Startbit der codierten Zeitinformation (0,2 sec)
P1, P2, P3 Prüfbits
GEN170

Übersicht GEN170

Der Codegenerator GEN170 erzeugt alle Signale, die zur Steuerung oder Simulation eines DCF77-kompatiblen Senders benötigt werden:

- 77.5 kHz - Referenz für das Trägersignal
- Sekundenmarken zur Erzeugung der Amplitudenmodulation
- PZF - Impulse und PZF-Fenster zur Erzeugung der Phasenmodulation
- Pulse-per-Second (PPS) Ausgabe

Datum und Uhrzeit der Baugruppe werden intern als UTC-Zeit (Universal Time Coordinated, früher GMT, Greenwich Mean Time) geführt. Über einen parametrierbaren Offset wird die UTC-Zeit in die Ortszeit umgerechnet, die zur Erzeugung der codierten Zeitinformation herangezogen wird. Beginn und Ende der Sommerzeit können über einen einfachen, parametrierbaren Algorithmus Jahr für Jahr automatisch berechnet oder für das laufende Jahr fest eingegeben werden.

Das Datum zur Einfügung der nächsten Schaltsekunde kann ebenfalls parametriert werden. Das System GEN170 erzeugt dann zum korrekten Zeitpunkt sowohl die Ankündigung der Schaltsekunde als auch die Schaltsekunde selbst.

16 TTL-Eingänge der Baugruppe bestimmen die Länge der AM-Sekundenmarken 0 bis 15, die von der PTB zum Teil zur Übertragung von Betriebsdaten genutzt werden.
Bedienelemente an der Frontplatte

FAIL LED und LOCK LED

Die Leuchtdiode FAIL ist nach dem Einschalten aktiv, und bleibt solange aktiv bis die aktuelle Zeit durch drücken der ACK Taste auf dem Frontplatte bestätigt wird, oder die Zeit seriell gesetzt wurde. Die Leuchtdiode LOCK zeigt die erzeugten AM-Sekundenmarken an.

LC Display

MENU Key

Diese Taste schaltet nacheinander durch mehrere Menüs.

Taste CLR/ACK

Mit Hilfe dieser Taste werden geänderte Betriebsparameter im batteriegepufferten Speicher abgelegt. Falls ein Eingabemenü verlassen wird, ohne diese Taste zu betätigen, werden alle bis dahin ausgeführten Änderungen verworfen.

Taste NEXT

In einem Dateneingabemenü (LCD Cursor ist sichtbar) wird mit Hilfe dieser Taste der Cursor zu der zu ändernden Ziffer bewegt. In einem Menü, welches nur Daten anzeigt (Cursor nicht sichtbar), wird bei Betätigung dieser Taste ein eventuell vorhandenes Untermenü aufgerufen.

Taste INC

Mit Hilfe dieser Taste wird bei der Dateneingabe die Ziffer bzw. der Buchstabe an der Cursorposition geändert.
Die Menüs eim einzeln

Hauptmenü

Das Hauptmenü wird angezeigt, wenn nach Einschalten des Geräts die Initialisierungsphase abgeschlossen ist. Während des power-down werden das aktuelle Datum und die Uhrzeit in den batteriegepufferten Speicher der real-time-clock (RTC) abgelegt. Bei einem erneuten power-up werden die aktuellen Informationen wieder aus der RTC gelesen. Die eingelesenen Informationen müssen durch drücken der ACK Taste bestätigt werden.

Solange die interne Zeit nicht durch drücken der CLR/ACK Taste an der Frontplatte bestätigt wird, oder die interne Zeit seriell gesetzt wurde, bleibt das GEN170 im Zustand "unsynchronized". Dieses wird gemacht, um sicherzustellen, das nach dem power-up keine falsche Zeit verteilt wird.

Nachdem die interne Zeit bestätigt wurde wird das Hauptmenü angezeigt. Die erste Zeile im Display zeigt die Funktion des Gerätes an:

Die nächsten zwei Zeilen zeigen den aktuellen Wochentag, das Datum, den Namen der Zeitzone (wie im Setup-Menü eingegeben) und die aktuelle Zeit entsprechend der eingestellten Zeitzone. In der letzten Zeile werden von links nach rechts die Pegel an den Steuereingängen für die AM-Sekundenmarken 0 bis 15 gezeigt. Je nachdem, ob an einer Position eine "0" oder eine "1" angezeigt wird, wird in der entsprechenden Sekunde eine kurze Marke ("0") bzw. eine lange Marke ("1") erzeugt.

Wenn die Taste NEXT gedrückt wird, zeigt ein Untermenü die Software-Versionen des Gerätes:
Menü SETUP

SETUP INITIAL TIME

![Setup Initial Time Menu]

Mit Hilfe dieses Menüs werden Datum und Uhrzeit des Generators eingestellt. Als Vorgabe dienen die aktuellen Werte bei Eintritt in das Menü. Wenn nach einer Änderung der Vorgaben die Taste CLR/ACK betätigt wird, wird die Systemzeit auf die angezeigten Werte gesetzt.

ADJUST SECONDS

SETUP TIME ZONE

In diesem Untermenü wird der Name der Ortszeit sowie die Abweichung der Ortszeit von UTC eingegeben. In der linken Hälfte des Displays werden Name und Abweichung für die normale Ortszeit angegeben (z. B. MEZ = UTC + 1h), in der rechten Hälfte dagegen Name und Zeitabweichung, wenn die Sommerzeitumschaltung aktiv ist (z. B. MESZ = UTC + 2h). Der Datumsbereich, in dem auf Sommerzeit geschaltet wird, wird in den beiden nächsten Untermenüs eingegeben.

<table>
<thead>
<tr>
<th>SETUP TIME ZONE</th>
<th>TIME ZONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF<->DAYL SAV -> ON</td>
<td></td>
</tr>
<tr>
<td>MEZ</td>
<td>MESZ</td>
</tr>
<tr>
<td>+01:00h</td>
<td>+02:00h</td>
</tr>
</tbody>
</table>

SETUP DAYLIGHT SAV ON/OFF

<table>
<thead>
<tr>
<th>SETUP DAYLIGHT SAV ON</th>
<th>DAYLIGHT SAV ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 31.03.1996</td>
<td>Day of week: ***</td>
</tr>
<tr>
<td>Time: 2:00:00</td>
<td>Time: 2:00:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SETUP DAYLIGHT SAV OFF</th>
<th>DAYLIGHT SAV OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 27.10.1996</td>
<td>Day of week: ***</td>
</tr>
<tr>
<td>Time: 3:00:00</td>
<td>Time: 3:00:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SETUP DAYLIGHT SAV ON</th>
<th>DAYLIGHT SAV ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 25.03.****</td>
<td>Day of week: Sun</td>
</tr>
<tr>
<td>Time: 2:00:00</td>
<td>Time: 2:00:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SETUP DAYLIGHT SAV OFF</th>
<th>DAYLIGHT SAV OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 25.10.****</td>
<td>Day of week: Sun</td>
</tr>
<tr>
<td>Time: 3:00:00</td>
<td>Time: 3:00:00</td>
</tr>
</tbody>
</table>
SETUP LEAP SECOND

In diesem Menü wird das Datum der nächsten Schaltsekunde eingegeben. Um die Weltzeit an die sich verlangsамende Drehung der Erde anzupassen, wird auf Anweisung des IERS (International Earth Rotation Service) von Zeit zu Zeit weltweit gleichzeitig eine Schaltsekunde in der UTC-Zeitskala eingefügt. Die Schaltsekunde wird meist am Ende des 31. Dezember oder am Ende des 30. Juni eingefügt, also jeweils nach 23:59:59 Uhr UTC.

SETUP SERIAL PORT PARM

Mit Hilfe dieses Untermenüs können Übertragungsgeschwindigkeit und Datenformat der seriellen Schnittstelle eingestellt werden. Standardwerte sind:

- **COM0:** 19200 baud, 8N1
- **COM1:** 9600 baud, 8N1

SETUP SER. STRING TYPE

In diesem Menü kann das Zeittelegramm der seriellen Schnittstellen eingestellt werden. Momentan ist für die GEN170 auf beiden Schnittstellen nur das Meinberg-Standardformat möglich.
SETUP SERIAL OUTPUT

In diesem Untermenü wird die Funktion der seriellen Schnittstelle eingestellt. COM0 / COM1 gibt ein Zeittelegramm im Meinberg-Standardformat sekündlich, minütlich oder auf Anfrage mit ASCII ‘?’.

SETUP TIMECODE OUT

Dieses Menü ermöglicht es, den generierten IRIG /AFNOR Zeitcode auszuwählen. Der CODE parameter wählt das Format des Zeitcodes (IRIG/AFNOR), unter der Einstellung TIME kann eingestellt werden, ob die Zeit als UTC oder local time ausgegeben werden soll.

Da die meisten Zeitcodeformate nicht den UTC offset in der übertragenen Zeit enthalten, oder ein flag das den aktuellen DST status anzeigt, und um sicherzustellen, das keine unerwarteten Zeitsprünge an den angeschlossenen Zeitcode Empfänger gelangen, ist die empfohlene Einstellung UTC.

Der IEEE1344 Zeitcode Signal enthält das Time Figure Of Merit (TFOM) flag, dieses zeigt an ob der Zeitcode Generator synchronisiert ist, oder nicht. Wenn der IEEE1344 code ausgewählt wurde, wird ein weiterer Parameter in der unteren rechten Ecke angezeigt. Dieser dient dazu, ob der Status des TFOM des eingelesenen Zeitcodes berücksichtigt (EN_T) werden soll, oder ob der Status des Generators immer als synchronized (DI_T) betrachtet werden soll. Diese Einstellung ist vor allem bei Tests sinnvoll.
INIT USER PARMS

![Setup Menu][1]

Standardparameter wiederherstellen

Wenn während des Einschaltens die beiden Tasten NEXT und INC gedrückt gehalten werden, wird der batteriegepufferte Speicher komplett gelöscht und alle vom Benutzer änderbaren Parameter werden auf Standardwerte gesetzt. Die Tasten sollten gehalten werden, bis das Hauptmenü auf dem Display erscheint.

Achtung: Ist die GEN170 ein Modul eines komplexeren systems, ist zu prüfen, ob die standard Parameter zu den restlichen Modulen passen.

Firmware Updates

Falls es einmal nötig ist, eine geänderte Version der System-Software in das Gerät zu laden, kann dies über die serielle Schnittstelle COM0 geschehen, ohne das Gehäuse des Gerätes zu öffnen.

Der aktuelle Inhalt des Programmspeichers bleibt solange erhalten, bis das Ladeprogramm den Befehl zum Löschen des Programmspeichers sendet. Dadurch ist sichergestellt, daß der Programmspeicher nicht gelöscht wird, wenn die Taste MENU versehentlich während des Einschaltens gedrückt war. Das Gerät ist in diesem Fall nach erneutem Einschalten wieder einsatzbereit.
Format des Meinberg Standard-Zeittelegramms

Das Meinberg Standard-Zeittelegramm besteht aus einer Folge von 32 ASCII-Zeichen, eingeleitet durch das Zeichen STX (Start-of-Text) und abgeschlossen durch das Zeichen ETX (End-of-Text). Das Format ist:

\(<\text{STX}\)D:tt.mm.jj;T:w;U:hh.mm.ss;uvxy<\text{ETX}\>

Die *kursiv* gedruckten Buchstaben werden durch Ziffern ersetzt, die restlichen Zeichen sind Bestandteil des Zeittelegramms. Die einzelnen Zeichengruppen haben folgende Bedeutung:

<STX> Startzeichen (Start-Of-Text, ASCII-Code 02h)

tt.mm.jj das Datum:
- *tt* Monatstag (01..31)
- *mm* Monat (01..12)
- *jj* Jahr ohne Jahrhundert (00..99)

w der Wochentag (1..7, 1 = Montag)

hh.mm.ss die Zeit:
- *hh* Stunden (00..23)
- *mm* Minuten (00..59)
- *ss* Sekunden (00..59, oder 60 wenn Schaltsekunde)

uv Status der Funkuhr:
- *u*: '#' Uhr hat seit dem Einschalten nicht synchronisiert
- '\ ' (Leerzeichen, 20h) Uhr hat bereits einmal synchronisiert
- *v*: '*' Uhr läuft im Moment auf Quarzbasis
- '\ ' (Leerzeichen, 20h) Uhr wird vom Sender geführt

x Kennzeichen der Zeitzone:
- 'U' UTC Universal Time Coordinated, früher GMT
- ' ' MEZ Mitteleuropäische Standardzeit
- 'S' MESZ Mitteleuropäische Sommerzeit

y Ankündigung eines Zeitsprungs während der letzten Stunde vor dem Ereignis:
- '!' Ankündigung Beginn oder Ende der Sommerzeit
- 'A' Ankündigung einer Schaltsekunde
- '\ ' (Leerzeichen, 20h) kein Zeitsprung angekündigt

<ETX> Ende-Zeichen (End-Of-Text, ASCII-Code 03h)
Time code

Funktionsweise

Block Diagram Time code
IRIG Standard Format

TIME FRAME 0.1 SECONDS (IRIG-A), 1 SECOND (IRIG-B)

TIME IN MILLISECONDS (IRIG-A), 10 MILLISECONDS (IRIG-B)

BCD TIME-OF-YEAR

Typical 0.1-Second Position Identifier
Duration 0.5ms (IRIG-A), 5ms (IRIG-B)

Typical 0.01-Second Position Identifier
Duration 0.2ms (IRIG-A)

Typical 0.001-Second Position Identifier
Duration 0.2ms (IRIG-B)

TYPICAL MODULATED CARRIER
IRIG-A: 10000 Hz
IRIG-B: 1000 Hz
Belegung des CF-Segmentes beim IEEE1344 Code

<table>
<thead>
<tr>
<th>Bit Nr.</th>
<th>Bedeutung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>Position Identifier P5</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Year BCD encoded 1</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Year BCD encoded 2</td>
<td>unteres Nibble des BCD codierten Jahres</td>
</tr>
<tr>
<td>52</td>
<td>Year BCD encoded 4</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Year BCD encoded 8</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>empty, always zero</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Year BCD encoded 10</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Year BCD encoded 20</td>
<td>oberes Nibble des BCD codierten Jahres</td>
</tr>
<tr>
<td>57</td>
<td>Year BCD encoded 40</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Year BCD encoded 80</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Position Identifier P6</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>LSP - Leap Second Pending</td>
<td>bis zu 59s vor Schaltsekunde gesetzt</td>
</tr>
<tr>
<td>61</td>
<td>LS - Leap Second</td>
<td>0 = LS einfügen, 1 = LS löschen 1.)</td>
</tr>
<tr>
<td>62</td>
<td>DSP - Daylight Saving Pending</td>
<td>bis zu 59s vor SZ/WZ Umschaltung gesetzt</td>
</tr>
<tr>
<td>63</td>
<td>DST - Daylight Saving Time</td>
<td>gesetzt während Sommerzeit</td>
</tr>
<tr>
<td>64</td>
<td>Timezone Offset Sign</td>
<td>Vorzeichen des Zeitzonenoffsets 0 = '0', 1 = '1'</td>
</tr>
<tr>
<td>65</td>
<td>TZ Offset binary encoded 1</td>
<td>Offset der IRIG Zeit gegenüber UTC</td>
</tr>
<tr>
<td>66</td>
<td>TZ Offset binary encoded 2</td>
<td>IRIG Zeit PLUS Zeitzonenoffset (einschließlich Vorzeichen) ergibt immer UTC</td>
</tr>
<tr>
<td>67</td>
<td>TZ Offset binary encoded 4</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>TZ Offset binary encoded 8</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Position Identifier P7</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>TZ Offset 0.5 hour</td>
<td>gesetzt bei zusätzlichem halbstündigen Offset</td>
</tr>
<tr>
<td>71</td>
<td>TFOM Time figure of merit</td>
<td>TFOM gibt den ungefähren Fehler der Zeitquelle an 2.)</td>
</tr>
<tr>
<td>72</td>
<td>TFOM Time figure of merit</td>
<td>0x00 = Uhr synchron</td>
</tr>
<tr>
<td>73</td>
<td>TFOM Time figure of merit</td>
<td>0x0F = Uhr im Freilauf</td>
</tr>
<tr>
<td>74</td>
<td>TFOM Time figure of merit</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>PARITY</td>
<td>Parität aller vorangegangenen Bits</td>
</tr>
</tbody>
</table>

1.) von der Firmware werden nur eingefügte Schaltsekunden (59→60, 60→00) unterstützt!
2.) TFOM wird auf 0 gesetzt wenn die Uhr nach dem Einschalten einmal synchronisieren konnte, andere Codierungen werden von der Firmware nicht unterstützt. *s.a. Auswahl des generierten Zeitcodes.*
Generierte Zeitcodes

Das Board verfügt neben dem amplitudenmodulierten Sinuskanal auch über unmodulier-
lierte Ausgänge zur Ausgabe des pulsweitenmodulierten DC-Signals, so daß sechs
unterschiedliche Zeitcodes verfügbar sind:

Besides the amplitude modulated sine wave signal, the board also provides unmodulated
DC-Level Shift TTL output in parallel. Thus six time codes are available.

a) B002: 100pps, PWM-DC-Signal, kein Träger
 BCD time of year

b) B122: 100pps, AM-Sinussignal, 1 kHz Trägerfrequenz
 BCD time of year

c) B003: 100pps, PWM-DC-Signal, kein Träger
 BCD time of year, SBS time of day

d) B123: 100pps, AM-Sinussignal, 1 kHz Trägerfrequenz
 BCD time of year, SBS time of day

e) B006: 100pps, PWM DC signal, no carrier
 BCD time of year, year number (0...99)

f) B126: 100pps, AM sine wave signal, 1 kHz carrier frequency
 BCD time of year, year number (0...99)

g) B007: 100pps, PWM DC signal, no carrier
 BCD time of year, SBS time of day, year number (0...99)

h) B127: 100pps, AM sine wave signal, 1 kHz carrier frequency
 BCD time of year, SBS time of day, year number (0...99)

i) AFNOR: Code lt. NFS-87500, 100pps, AM-Sinussignal,
 1kHz Träger, BCD time of year, vollständiges Datum,
 SBS-Time of Day, Ausgangspegel angepasst.

j) IEEE1344: Code lt. IEEE1344-1995, 100pps, AM-Sinussignal,
 1kHz Träger, BCD time of year, SBS time of day,
 IEEE1344 Erweiterungen für Datum, Zeitzone,
 Sommer/Winterzeit und Schaltsekunde im Control Funktions
 Segment (CF) s.a. Tabelle Belegung des CF-Segmentes beim IEEE1344 Code
Auswahl des generierten Zeitcodes

Das TFOM Segment des IEEE1344 Codes wird in Abhängigkeit des im Zeitstring gesendeten „already sync‘ed” Zeichens („#“) gesetzt. Dieses Zeichen wird immer dann gesetzt wenn die Uhr nach dem Einschalten noch nicht synchronisiert hat. Für das, time figure of merit‘ (TFOM) Segment des IEEE1344 Codes gilt:

Uhr hat nach dem Einschalten einmal synchronisiert : TFOM = 0000
Uhr hat nach dem Einschalten noch nicht synchronisiert : TFOM = 1111

Zu Testzwecken lässt sich die Ausgabe des TFOM Segmentes im IEEE1344 Code abschalten. Das Segment wird dann immer auf 0000 gesetzt.
Ausgänge

AM-Ausgang

Der amplitudenmodulierte Sinusträger steht an der VG-Leiste Pin 14a zur Verfügung. Die Trägerfrequenz beträgt 1kHz (IRIG-B). Das Signal hat eine Amplitude von 3Vss (MARK) bzw. 1Vss (SPACE) an 50 Ohm. Über die Anzahl der MARK-Amplituden bei zehn Trägerschwingungen erfolgt die Codierung. Dabei gelten folgende Vereinbarungen:

a) binär „0“ : 2 MARK-Amplituden, 8 SPACE-Amplituden
b) binär „1“ : 5 MARK-Amplituden, 5 SPACE-Amplituden
c) position-identifier : 8 MARK-Amplituden, 2 SPACE-Amplituden

PWM DC Output

Das in den Abbildungen „IRIG-“ und „AFNOR Standardformat“ dargestellte pulsweitenmodullierte DC-Signal wird immer parallel zum Sinussignal generiert und steht an der VG-Leiste Pin 13a als TTL-Pegel verfügbar.

Technical Data

<table>
<thead>
<tr>
<th>Ausgänge:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsymmetrisches AM-Sinussignal:</td>
<td></td>
</tr>
<tr>
<td>3VSS (MARK), 1VSS (SPACE) an 50 W</td>
<td></td>
</tr>
<tr>
<td>PWM-Signal: TTL-Pegel an 50 Ω, high aktiv</td>
<td></td>
</tr>
</tbody>
</table>
Technische Daten GEN170

LC-DISPLAY: 4 x 16 Zeichen, anzuzeigende Daten per Taster anwählbar

EINGANGSSIGNALE:
optional:
1 pps in Sekundenimpuls (TTL-Pegel, steigende Flanke)
10 MHz in Referenzfrequenz (Sinus)
(nur bei Konfiguration für externe Referenz)
Amplitude U_{eff}: 1 V
Eing. Widerst.: 50 Ω

AUSGANGSSIGNALE:
10 MHz Referenzfrequenz (TTL-Pegel)
77.5 kHz Trägerfrequenz (TTL-Pegel)
AM Sekundenmarke (TTL-Pegel, activ high)
PZF PRN sequence (TTL-Pegel)
PZF_CLK PRN clock (TTL-Pegel)
PZF_WIN PRN window (TTL-Pegel, active high)
IRIG_AC moduliertes IRIG sinus Signal Ausgang
IRIG_DC unmoduliertes IRIG Ausgang
P_SEC Sekundenpuls, 200ms (TTL level)
PPM Minutenpuls, 200ms (TTL level)

IMPULSGENAUIGKEIT: besser als ±100 nsec

FREQUENZGENAUIGKEIT DES QUARZES:
1 Tag: $±1 \cdot 10^{-7}$
1 Jahr: $±5 \cdot 10^{-7}$
Temperadurdrift: $±2 \cdot 10^{-7}$
SERIELLE SCHRITTSTELLE: 2 asynchrone serielle Schnittstelle (RS-232)

Baudrate: 300 bis 19200
Datenformat: 7N2, 7E1, 7E2, 8N1, 8N2, 8E1
Defaulteinstellung: 19200, 8N1

STROMVERSORGUNG: 5 V ± 5%, 300 mA

ABMESSUNGEN: 19" Modul in geschlossenem 112 mm x 102 mm (h x b), Aluminium-HF-Tubus

FRONTPLATTE: 3 HE / 21 TE (128 mm hoch x 107 mm breit), Aluminium

STECKVERBINDER: DIN 41612, Typ C 64, Reihen a + c

UMGEBUNGSTEMPERATUR: 0 ... 60° C

LUFTFEUCHTIGKEIT: 85% max.
Signale an der Steckerleiste GEN170

<table>
<thead>
<tr>
<th>Name</th>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>32a+c</td>
<td>Ground</td>
</tr>
<tr>
<td>VCC in (+5V)</td>
<td>1a+c</td>
<td>+5V supply</td>
</tr>
<tr>
<td>Vosc in (+5V)</td>
<td>2a+c</td>
<td>+5V supply</td>
</tr>
<tr>
<td>10 MHz out</td>
<td>12a</td>
<td>10 MHz frequency output (TTL level)</td>
</tr>
<tr>
<td>2.25MHz out</td>
<td>27c</td>
<td>2.25MHz frequency output (TTL level)</td>
</tr>
<tr>
<td>77.5 kHz out</td>
<td>11a</td>
<td>77.5 kHz frequency output (TTL level)</td>
</tr>
<tr>
<td>DCF out</td>
<td>8c</td>
<td>AM time marks (TTL level, active high)</td>
</tr>
<tr>
<td>PZF_CLK out</td>
<td>10a</td>
<td>PRN clock (TTL level)</td>
</tr>
<tr>
<td>PZF_WIN out</td>
<td>7c</td>
<td>PRN window (TTL level, active high)</td>
</tr>
<tr>
<td>PZF out</td>
<td>6c</td>
<td>PRN sequence (TTL level)</td>
</tr>
<tr>
<td>P_SEC out</td>
<td>14c</td>
<td>pulse once a second, duration 200ms (TTL level)</td>
</tr>
<tr>
<td>PPM out</td>
<td>8c</td>
<td>pulse once a minute, duration 200ms (TTL level)</td>
</tr>
<tr>
<td>IRIG_AC out</td>
<td>a6</td>
<td>Modulated IRIG sine wave output</td>
</tr>
<tr>
<td>IRIG_DC out</td>
<td>a7</td>
<td>Unmodulated IRIG output</td>
</tr>
<tr>
<td>10MHz in</td>
<td>4c</td>
<td>10MHz reference input 1V_{eff} into 50 Ohm</td>
</tr>
<tr>
<td>1 pps in</td>
<td>28c</td>
<td>sync. second (TTL, rising edge)</td>
</tr>
<tr>
<td>TTL_INxx in</td>
<td></td>
<td>control inputs for AM marks 0 through 15 (TTL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>long AM mark if input is high</td>
</tr>
<tr>
<td>COMx TxD out</td>
<td></td>
<td>COMx RS-232 output</td>
</tr>
<tr>
<td>COMx RxD in</td>
<td></td>
<td>COMx RS-232 input</td>
</tr>
<tr>
<td>/RESET in/out</td>
<td>9c</td>
<td>RESET signal, Open Drain pulled up to +5V</td>
</tr>
<tr>
<td>(reserved)</td>
<td></td>
<td>reserved, do not connect</td>
</tr>
</tbody>
</table>
Steckerbelegung GEN170

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC in (+5V)</td>
<td>VCC in (+5V)</td>
</tr>
<tr>
<td>2</td>
<td>Vosc in (+5V)</td>
<td>Vosc in (+5V)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10 MHz in</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>IRIG_AC out</td>
<td>PZF out</td>
</tr>
<tr>
<td>7</td>
<td>IRIG_DC out</td>
<td>PZF_WIN out</td>
</tr>
<tr>
<td>8</td>
<td>PPM</td>
<td>DCF out</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>/RESET in/out</td>
</tr>
<tr>
<td>10</td>
<td>PZF_CLK out</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>77.5 kHz out</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10 MHz out</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>TTL_IN0 in</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TTL_IN1 in</td>
<td>P_SEC out</td>
</tr>
<tr>
<td>15</td>
<td>TTL_IN2 in</td>
<td>reserved 0</td>
</tr>
<tr>
<td>16</td>
<td>TTL_IN3 in</td>
<td>reserved 1</td>
</tr>
<tr>
<td>17</td>
<td>TTL_IN4 in</td>
<td>reserved 2</td>
</tr>
<tr>
<td>18</td>
<td>TTL_IN5 in</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TTL_IN6 in</td>
<td>reserved 3</td>
</tr>
<tr>
<td>20</td>
<td>TTL_IN7 in</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>TTL_IN8 in</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>TTL_IN9 in</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>TTL_IN10 in</td>
<td>COM1 TxD out</td>
</tr>
<tr>
<td>24</td>
<td>TTL_IN11 in</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>TTL_IN12 in</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>TTL_IN13 in</td>
<td>COM0 TxD out</td>
</tr>
<tr>
<td>27</td>
<td>TTL_IN14 in</td>
<td>2.25 MHz out</td>
</tr>
<tr>
<td>28</td>
<td>TTL_IN15 in</td>
<td>1 pps in</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>COM1 RxD in</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>COM0 RxD in</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>
DCF77-Simulator

Funktionsweise

Technische Specification DCF77 Simulator

Betriebsspannung: +5V / ca. 70mA

Eingänge: MOD in (DCF-Zeitmarken) und 1MHz in, TTL-Pegel optional: 10MHz in (Lötbrücken auf der Platine entsprechend setzen)

Ausgänge: 4x amplitudenmod. quarzstabile Trägerfrequenz 77.5 kHz, potentialfrei
Ausgangspegel ca. -60 dBm
Ausgangspegel ca. -50 dBm (Modifikationen erforderlich)

Anschluß: 64-polige VG-Leiste DIN41612, Belegung siehe Rückseite

Kartenformat: Europakarte 100mm x 160mm x 1,5mm Epoxy

Frontplatte: Frontplatte 4TE (20mm)

Temperaturbereich: 0° ... 50°C

Luftfeuchtigkeit: Relative Luftfeuchtigkeit max. 85%
Rear Connector Pin Assignments SIM77PV4

<table>
<thead>
<tr>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC in (+5V)</td>
</tr>
<tr>
<td>2</td>
<td>VCC in (+5V)</td>
</tr>
<tr>
<td>3</td>
<td>MOD in</td>
</tr>
<tr>
<td>4</td>
<td>MOD in</td>
</tr>
<tr>
<td>5</td>
<td>MOD in</td>
</tr>
<tr>
<td>6</td>
<td>PZF in</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>+SIM_OUT1</td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10MHz in</td>
</tr>
<tr>
<td>13</td>
<td>-SIM_OUT1</td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>+SIM_OUT2</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-SIM_OUT2</td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>+SIM_OUT3</td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>-SIM_OUT3</td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>7.75MHz in</td>
</tr>
<tr>
<td>28</td>
<td>+SIM_OUT4</td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-SIM_OUT4</td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td>GND</td>
</tr>
</tbody>
</table>

Male connector according to DIN 41612, type C 64, rows a + c
Technische Daten GEN170TGP

GEHÄUSE: Tischgehäuse, Schroff Propac
Frontplatte 3 HE / 42 TE (128 mm hoch / 213 mm breit)

SCHUTZART: IP20

ABMESSUNGEN: 257 mm x 157 mm x 316 mm (B x H x T)

Rückwandanschlüsse

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Steckverbinder</th>
<th>Art</th>
<th>Kabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM0</td>
<td>25pol. SUB-D</td>
<td>RS232</td>
<td>Datenleitung geschirmt</td>
</tr>
<tr>
<td>DCF_SIM</td>
<td>BNC</td>
<td>77.5kHz Antennenausgang -62dBm</td>
<td></td>
</tr>
<tr>
<td>DCF_SIM</td>
<td>BNC</td>
<td>77.5kHz Antennenausgang -50dBm</td>
<td></td>
</tr>
<tr>
<td>IRIG</td>
<td>BNC</td>
<td>3VSS (MARK), 1VSS (SPACE) an 50 Ohm</td>
<td></td>
</tr>
<tr>
<td>Netz</td>
<td>Kaltger. Stecker</td>
<td>230V/50Hz</td>
<td>Kaltgeräteanschlußkabel</td>
</tr>
</tbody>
</table>

CE-Kennzeichnung

Dieses Gerät erfüllt die Anforderungen
89/336/EWG „Elektromagnetische Verträglichkeit“.
Hierfür trägt das Gerät die CE-Kennzeichnung.
GEN170TGP Rückansicht

Anschlussbelegung des 25 pin Steckverbinders

- **RS232 COM0**
 - GND
 - RxD
 - TxD
 - 18
 - 19
 - 21
 - 22
 - 23
 - 24
 - 25